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Belief Distortions and Macroeconomic Fluctuations†

By Francesco Bianchi, Sydney C. Ludvigson, and Sai Ma*

This paper combines a  data-rich environment with a machine learning 
algorithm to provide new estimates of  time-varying systematic expec-
tational errors (“belief distortions”) embedded in survey responses. 
We find sizable distortions even for professional forecasters, with all 
 respondent-types  overweighting the implicit judgmental component of 
their forecasts relative to what can be learned from publicly avail-
able information. Forecasts of inflation and GDP growth oscillate 
between optimism and pessimism by large margins, with belief distor-
tions evolving dynamically in response to cyclical shocks. The results 
suggest that artificial intelligence algorithms can be productively 
deployed to correct errors in human judgment and improve predictive 
accuracy. (JEL C45, D83, E23, E27, E31, E32, E37)

How important are belief distortions in economic decision-making and what 
is their relation to macroeconomic fluctuations? Large theoretical literatures have 
emerged to argue that systematic expectational errors embedded in beliefs can have 
important dynamic effects on the economy. Less is known about the empirical rela-
tion of any such distortions with macroeconomic activity.

To formalize our notion of “belief distortion,” let us define it in general terms as 
an ex ante expectational error generated by the systematic  misweighting of avail-
able information demonstrably pertinent to the accuracy of the belief. This definition 
nests those that consider errors generated by merely omitting relevant information to 
include any instance where information is suboptimally given too much or too little 
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weight. In the theoretical macroeconomic literatures where distorted beliefs play a 
role, economic agents make systematic expectational errors due to a wide variety 
of reasons. These include the presence of information frictions driven by rational or 
behavioral inattention, the use of simple extrapolative rules, the intentional adoption 
of conservatively pessimistic beliefs, the  overreaction to incoming news, or the pres-
ence of skewed priors, among others.

A fundamental challenge in assessing the role of distorted beliefs in macroeco-
nomic fluctuations is that no objective measure of such distortions exists. So far, 
empirical work has largely proceeded by investigating whether forecast errors made 
by survey respondents deviate from the standard of full information and rational 
expectations. Yet a review of the literature discussed below finds little agreement on 
how such a theoretical standard should be measured. Existing studies differ accord-
ing to the specific surveys that are investigated, the segment of the population that 
is surveyed, the topic of the survey questions, the time period to which the survey 
questions pertain, and the empirical methodology used to identify systematic errors 
in expectations. Perhaps most important, given the  wide-ranging theoretical litera-
tures cited above and the vast amount of information that could be considered ex ante 
known and pertinent to economic decision making, it is not obvious what benchmark 
model of beliefs should be applied to measure any distortion in survey responses.

This paper proposes new measures of systematic expectational errors in survey 
responses and relates them to macroeconomic activity. Our objective is to construct 
and study a comprehensive, methodologically consistent, econometric measure 
of belief distortions in macroeconomic expectations by looking across a range of 
surveys, a range of agent types, and a range of questions about future economic 
outcomes. A general premise of our approach is that big data algorithms can be 
productively employed to reveal subjective biases in human judgments. Once we 
have a method for uncovering those biases, artificial intelligence algorithms can be 
deployed to “correct” those errors and improve predictive accuracy.

Returning to our definition of belief distortions above, it is clear that measuring 
the errors in human judgments requires four key ingredients. First, we require direct 
evidence on what economic  decision-makers actually believe. For this we obtain 
data from several different surveys, different survey questions, and broad  cross sec-
tions of survey respondents with different beliefs.

Second, we must cope with the theoretically vast quantity of available informa-
tion that is possibly pertinent to belief accuracy. For this, we use tools for data-rich 
environments along with machine learning to process hundreds of pieces of infor-
mation that would have been available to survey respondents in real time at daily, 
quarterly, and monthly sampling intervals. Our approach also explicitly recognizes 
that forecasters may combine public information with private information or judg-
ment in their predictions, and this too must be taken into account in the quantifica-
tion of forecaster distortion. We argue below that artificial intelligence algorithms 
can effectively control for that intangible information using a specification that con-
ditions on the current survey forecast.

Third, we must account for other bona fide features of real time decision-making, 
such as the  out-of-sample nature of  forward-looking judgments. Failure to properly 
account for either the data-rich environment in which survey respondents operate 
or the  out-of-sample nature of their forecasts can lead to erroneous  conclusions 
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about belief distortions and their relation to the macroeconomy. Conversely, using 
 information that may have been unavailable to survey respondents to compute 
a standard of  nondistorted beliefs could be equally erroneous. To address these 
issues, we develop a dynamic machine learning algorithm explicitly designed to 
combat overfitting in order to detect demonstrable, ex ante expectational errors in 
 real time.

The fourth and final ingredient is the availability of observations on both survey 
responses and objective economic information over a sufficiently long time span. 
This is required to reduce sampling noise, as is necessary to distinguish bad luck in 
a random environment from a systematic  misweighting of information, as well as to 
statistically infer the relation of any belief distortions to cyclical fluctuations.

With these ingredients in hand, we ask whether  cross sections of survey respon-
dents with different beliefs systematically  misweight pertinent economic informa-
tion. If the machine detects a sustained pattern of demonstrable, ex ante errors in 
survey respondents’ forecasts, the magnitude of these distortions should be evident 
from the relative (machine versus  respondent-type)  out-of-sample forecast errors 
once averaged over a sample sufficiently long so as  to eliminate differences in 
ex post predictive outcomes attributable to random error.

Machine learning is itself a model of belief formation. We argue that it provides 
an appropriate benchmark for quantifying biases in survey responses, for two rea-
sons. One is that optimized approaches to real world decision and prediction prob-
lems almost always require the efficient processing of large amounts of information. 
This clearly applies to professional forecasters who are presumably among the most 
informed agents in the economy, but also to other  agent types, including investors, 
firms, governments, and even households. Machine algorithms are advantageous 
in this regard because they are explicitly designed to cope with large amounts of 
information. This is important because a benchmark based on a small amount of 
arbitrarily chosen information could fail to reveal systematic expectational errors or, 
conversely, lead to spurious evidence of systematic error. A second reason is that a 
machine algorithm can easily be coded to systematically adapt to new information 
as it becomes available and to make  out-of-sample forecasts on this basis. Thus 
the approach does not run the risk of spuriously indicating that respondent perfor-
mance is suboptimal merely because of the existence of structural breaks and/or the 
arrival of new information that even an efficient information processing algorithm 
could have learned about only slowly over time. More generally, we argue that the 
 machine-based methods offer hope for improving prediction and estimation in a 
range of settings that rely on human surveys as a major empirical input.

Inherent in our  machine-based approach is the idea that minding key features of 
real world expectation formation is essential when establishing a benchmark against 
which belief distortions are measured. Whether doing so matters in practice, how-
ever, is an empirical question. On this question we can report at least three ways in 
which our results differ from some in the extant literature. First, in contrast to well 
known results from  in-sample regressions, we find little evidence that lagged ex ante 
revisions in survey forecasts have predictive power for average survey forecast 
errors. Second, information found elsewhere to be consequential for  out-of-sample 
prediction in a  low-dimensional setting is often found to be unimportant in our 
 high-dimensional, data-rich setting. Third, measures of belief distortions created 



2272 THE AMERICAN ECONOMIC REVIEW JULY 2022

by comparing ex ante survey expectations with theoretical benchmarks that rely on 
ex post historical outcome data overstate the magnitude of distortion.

Our main economic findings may be summarized as follows. First, across a range 
of surveys, variables, and  respondent-types with heterogeneous beliefs, the machine 
model produces lower mean squared forecast error over long external evaluation 
samples, sometimes by large margins. The magnitude of improvement is especially 
large in the last five years of the sample, from 2013: II to 2018:II. A key finding is 
that survey respondents of all types place too much weight on the private or judg-
mental component of their forecasts and too little weight on objective, publicly 
available economic information. We present below a simple model of public and 
private signals that facilitates this interpretation.

Second, survey expectations of inflation for the median respondent of all surveys 
are biased upward on average, a direction we shall refer to as “pessimistic.” By 
contrast, survey expectations of economic growth by professional forecasters and 
corporate executives are “optimistic” on average—i.e., biased upward, while they 
are very slightly pessimistic for households. These biases are found to be largest at 
the end of our sample, from 2013: II–2018:II, when the median forecast of economic 
growth from the Survey of Professional Forecasters (SPF) was biased upward by an 
amount equal to 38 percent of actual GDP growth over this period, resulting in fore-
casts that were 18 percent less accurate on average than the machine specification. 
The median SPF forecaster also persistently  overestimated inflation during this time 
period, resulting in forecasts that were 37 percent less accurate than the machine 
specification.

Third, although our machine learning algorithm indicates that sparse specifica-
tions are often optimal, this is not the case in every period. Moreover, even with 
sparse specifications, the precise information utilized changes from period to period. 
These results underscore the importance of using a dynamic,  large-scale informa-
tion processing algorithm to reduce errors in human judgment, even if much of the 
information the algorithm considers is associated with a coefficient that is shrunk all 
the way to zero most of the time.

Fourth, although the machine is able to detect patterns in the data that notably 
improve predictive accuracy over human forecasts, these improvements produce 
smaller estimates of belief distortion than suggested by some previous empirical 
studies in the behavioral macro literature, as discussed below. In contrast to these 
studies, however, our benchmark measure of  nondistorted beliefs is formed by (i) 
relying exclusively on information that we can verify could have been known to 
survey respondents on or before the survey response deadline, (ii) requiring the 
machine to choose every aspect of the forecasting specification (including the pre-
dictor variables, the lag orders, the window lengths, etc.) ex ante rather than with 
hindsight, and (iii) employing genuine  out-of-sample prediction in the external val-
idation step. The strict adherence to these principles means that we find a smaller 
magnitude of belief distortion in the predictions of professional forecasters than 
some previous studies. Moreover, there are times in our sample when the machine 
makes large ex post mistakes. A notable example is the Great Recession, which the 
machine failed to recognize in real time, resulting in large forecast errors similar in 
magnitude to those made by professional forecasters during this episode. We argue 
that such episodes underscore the role of largely unforeseen events in generating 
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occasionally large prediction error, not all of which can be attributed to a systematic 
bias in expectations.

The rest of this paper is organized as follows. Section I reviews the related lit-
erature. Section  II describes our econometric and machine learning framework. 
Section  III describes results pertaining to our estimates of belief distortions and 
relates our estimates with those from approaches used in some  well-known prior 
empirical studies. Section IV contains results on how belief distortions change over 
the business cycle. Section V concludes. A large amount of additional material on 
our data construction, estimation procedures, and additional robustness checks have 
been placed in an online Appendix. 

I. Related Literature

Our estimates provide a benchmark to evaluate theories for which information 
capacity constraints, extrapolation, sentiments, ambiguity aversion, and other depar-
tures from full information, rational expectations play a role in business cycles.

In these theoretical literatures, economic agents make systematic expectational 
errors for a variety of reasons. These reasons include the presence of information fric-
tions that lead agents to act in a “boundedly rational” manner because they are inca-
pable of attending to or processing all the available information at a given moment 
(e.g., Mankiw and  Reis 2002; Woodford 2002; Sims 2003; Reis 2006a, 2006b; 
Eusepi and Preston 2011; Gabaix 2014). Alternatively agents may be inattentive 
for broader behavioral reasons (e.g., Gabaix 2020). A key implication of these the-
ories, explored in well-known work by Coibion and Gorodnichenko (2015), is that 
individuals  underreact to objective economic information. Our finding that belief 
distortions for professional forecasters are larger at the end rather than the beginning 
of our sample suggests that forms of bounded rationality attributable solely to lim-
itations in information processing capacity are unlikely to fully explain our results. 
Similarly, our estimates are little changed if we allow the machine to observe every 
 respondent-type’s current forecast, suggesting that information frictions based on 
noisy “dispersed information” are also unlikely to be the most relevant source of 
systematic error we uncover.

Other theories postulate that individuals use simple extrapolative rules or 
 overweight “representative” events in reacting to incoming news (e.g., De  Long 
et  al. 1990; Barberis, Shleifer, and Vishny 1998; Barberis et  al. 2015; Bordalo, 
Gennaioli, and Shleifer 2018; Gennaioli and Shleifer 2018; Bordalo et al. 2018). 
Related theories propose that individuals overweight their personal experiences 
(e.g., Malmendier and Nagel 2011, 2015). A key implication of many of these theo-
ries is that individuals  overreact to objective information.

A literature on “sentiments” postulates that communication frictions can cause 
aggregate expectations to exhibit statistical biases (e.g., Angeletos and La’O 2013; 
Angeletos, Collard, and Dellas 2018b; Milani 2011, 2017). Other models feature 
“confidence shocks,” or ambiguity averse agents who are deliberately pessimistic 
on average (e.g., Hansen and Sargent 2008; Epstein and Schneider 2010; Ilut and 
Schneider 2014; Bianchi, Ilut, and Schneider 2018; Ilut and Saijo 2021; Bhandari, 
Borovicka, and Ho 2019), or agents with skewed priors (Afrouzi and Veldkamp 
2019). There remains a question of whether ambiguity aversion or skewed priors 
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would be revealed in survey responses. If not, such models need some other mecha-
nism to explain the systematic expectational errors documented here and elsewhere.

Finally a theoretical literature in economic psychology studies how basic prop-
erties of cognition can give rise to human biases in expectation formation (e.g., 
Woodford 2013; Khaw, Stevens, and Woodford 2017).

Any of the theories above provide a mechanism through which a relatively unbi-
ased and potentially more  information-efficient machine operating in a data-rich 
environment would provide forecasts that deviate from those made by humans and 
possibly be more accurate. The objective of this study is to provide new measures 
of such deviations and to investigate their relation to macroeconomic fluctuations.

On the empirical side, our work follows a growing body of literature that reports 
evidence of belief distortions and relates them to economic activity. These papers 
include those that find evidence of departures from rational expectations in predict-
ing inflation and other macro variables (Coibion and Gorodnichenko 2012, 2015; 
Fuhrer 2018), the aggregate stock market (Bacchetta, Mertens, and van Wincoop 
2009; Amromin and Sharpe 2014; Greenwood and Shleifer 2014; Adam, Marcet, 
and Beutel 2017), the cross section of stock returns (Bordalo et al. 2019), credit 
spreads (Greenwood and Hanson 2015; Bordalo, Gennaioli, and Shleifer 2018), and 
corporate earnings (DeBondt and Thaler 1990;  Ben-David, Graham, and Harvey 
2013; Gennaioli, Ma, and Shleifer 2016; Bouchaud et al. 2019). Although these 
studies differ widely according to their empirical design, none take into account the 
data-rich context in which survey respondents operate or the dynamic,  out-of-sample 
nature of their forecasts, gaps our study is designed to fill.

These very differences lead our findings to diverge in notable ways from some 
in the extant literature. For example, following Coibion and Gorodnichenko (2015), 
we ask whether ex ante revisions in the average forecast reduce average ex post 
forecast errors, as would be indicative of models that imply  underreaction to eco-
nomic news. Using the methodology proposed in this paper, we find no evidence 
that they do. Instead, the coefficients on forecast revisions are shrunk to zero by the 
dynamic machine algorithm in favor of placing greater absolute weight on other 
pieces of information. Even if we use the same empirical specification used in 
Coibion and Gorodnichenko (2015), forecast revisions cease to be a useful predic-
tors of forecast errors in a dynamic context when predictions are simply made  out 
of sample rather than  in sample. Similarly, we ask whether survey respondents ini-
tially  underreact to cyclical shocks but later  overreact, as documented in Angeletos, 
Huo, and Sastry (2020). We confirm this general pattern but find that the magni-
tudes of under- and  overreaction are much smaller than those using the methodology 
of Angeletos et. al., in which the benchmark for measuring  nondistorted beliefs is 
based on historical outcome data that would not have been known to survey respon-
dents in real time.

The literature discussed so far has little to say about overconfidence, a term gen-
erally reserved in the behavioral economics literature to describe an agent who over-
estimates the precision of her private signal. Yet our finding that respondents of all 
types place too much weight on the marginal information embedded in their own 
forecasts is one of the most robust and quantitatively important contributors to bias 
that we uncover. We present below a simple model of public and private  signals to help 
interpret this finding. In this model, the machine will downweight the information 
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contained in the survey response if the forecaster either  overestimates the  precision 
of her private signal, as in traditional notions of overconfidence, and/or if she inef-
ficiently combines the public information, thereby effectively  underestimating the 
precision of her public signal. Either way, the forecaster gives too much weight in 
relative terms to the private, judgmental component of her forecast. In this regard, 
our findings relate to extensive finance literature that provides theory and evidence 
of overconfidence and its role in explaining a range of stylized facts about stock 
return predictability and trading patterns. Groundbreaking contributions include 
Odean (1998); Daniel, Hirshleifer, and Subrahmanyam (1998); Barber and Odean 
(2000); and Daniel, Hirshleifer, and Subrahmanyam (2001). Daniel and Hirshleifer 
(2015) provide an overview of this literature. More generally, our findings echo 
a large body of evidence in psychology showing that people—perhaps especially 
experts and professionals—give too much weight to their private judgments when 
making predictions (e.g., Kahneman, Sibony, and Sunstein 2021, ch. 10). To the 
best of our knowledge, this paper is the first to find evidence suggesting that sys-
tematic expectational errors in professional macroeconomic predictions are partly 
attributable to a strong overreliance on the implicit judgmental component of their 
forecasts.

Our work also connects with a  pre-existing econometric forecasting literature, 
which finds that survey forecasts of inflation are extremely difficult if not impossible 
to beat with statistical models in  out-of-sample forecasting (e.g., Ang, Bekaert, and 
Wei 2007; Del Negro and Eusepi 2011; Aiolfi, Capistrán, and Timmermann 2011; 
Genre et al. 2013; and Faust and Wright 2013). Indeed, these studies conclude that 
the very best forecasts of inflation are the subjective ones provided by surveys. By 
contrast, our machine learning algorithm, with its focus on detecting demonstrable 
ex ante errors, performs better in  out-of-sample forecasting than every percentile of 
all of the survey forecast distributions that we study.

Finally, we are aware of relatively little work that has used machine learning as 
a benchmark against which belief distortions are measured. An important exception 
is Martin and Nagel (2019) who use it to study models of expected stock returns 
in the  cross section. Although their context is very different from ours, they find, 
as we do, that accounting for the interplay between a data-rich environment and 
dynamic,  out-of-sample forecasting generates findings about belief distortions that 
differ considerably from prior frameworks that  sidestep these aspects of real world 
decision-making.

II. Econometric and Machine Learning Framework

This section describes our econometric and machine learning framework. This 
framework is applied to three different surveys that ask about expectations for future 
inflation and aggregate economic activity: the Survey of Professional Forecasters 
(SPF), the University of Michigan Survey of Consumers (SOC), and the Blue Chip 
Survey (BC). The first covers professional forecasters in a variety of institutions, the 
second covers households and is designed to be representative of the US population, 
and the third covers executives and professional forecasters at financial firms. Data 
from the SPF and the SOC are publicly available; BC data were purchased and  hand 
coded for the earlier part of the sample.
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A. Overview

Before getting into the details of our approach, we discuss two aspects of the 
general methodology.

First, as we argue below, a good benchmark against which any belief distortions 
in survey forecasts are measured must account for the information in the current sur-
vey forecast. At the same time, the analysis we undertake requires a sufficiently long 
time series of observations. Unfortunately, and the panel elements of the surveys are 
simply too limited to conduct the analysis on a  respondent-level basis, since panelist 
participation is often brief and/or intermittent over time.1 We therefore conduct the 
analysis for respondents of a particular type at time  t , defined to be those in specific 
percentiles of the time  t  survey forecast distribution. A maintained assumption of 
our approach, explained in detail below, is that survey respondents know their own 
“type,” so that they have a sense of where in the time  t  forecast distribution their 
belief is located. We argue that this assumption is a reasonable approximation to 
reality, at least for professional forecasters, who routinely and continuously tele-
graph updates of their forecasts to clients and the press, while at the same time 
monitoring the evolving predictions of other forecasters at “rival” institutions. Such 
forecasters are therefore likely to have very good  real-time information about their 
location in the professional forecast distribution.

To provide support for this claim, Figure 1 reports the forecasts of  four-quarter-ahead 
real GDP growth over time for each percentile of a given professional forecast dis-
tribution along with the  same-percentile forecast of the same variable and for the 
same future time period, but from a closely related professional forecaster survey 
that was publicly available before the survey deadline faced by type  i . The first panel 
considers the BC survey, where survey results are released every month, giving a 
frequent snapshot of the professional forecaster distribution. Figure 1 shows that BC 
forecast distribution is quite persistent from  month-to-month: for every percentile of 
the distribution, we see that the  i th percentile’s time  t  forecast is highly correlated 
with last month’s  i th percentile forecast. Thus BC forecasters can form an excellent 
idea of where their current forecast is located in the time  t  forecast distribution by 
observing last month’s published BC distribution. For a panelist in the quarterly SPF 
survey, last period’s SPF forecast distribution provides more stale information by 
definition since it was released a quarter rather than a month ago. However, the BC 
survey is a similar professional panel, and may even have overlapping panelists. In 
addition, the timing of the two surveys’ deadlines is such that an SPF panelist can 
observe the BC forecast distribution from approximately two weeks prior for predic-
tions of the same variable and over the same future time period. The second panel of 
Figure 1 shows that the  i th percentile’s time  t  forecast from the SPF panel is highly 
correlated with the  i th percentile’s forecast from the most recent BC panel, which 
was released roughly two weeks before. Thus SPF forecasters can form an excel-
lent idea of where their current forecast is located in the time  t  professional forecast 

1 The learning algorithm described below employs rolling estimation and training sample windows that could be 
as long as 34 quarters once combined, a span of data that must be available before the first  out-of-sample machine 
forecast can be recorded. By contrast, the length of time that individual panelists remain in the survey samples is 
comparatively short. For example, for the SPF survey on inflation expectations, the average forecaster remains in 
our sample just 18.5 quarters, with gaps in participation that would require filling in missing values.
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Figure 1. Forecaster Types

Notes: Panel A of the figure reports the median Blue Chip (BC)  four-quarter-ahead real GDP growth forecast (blue) 
along with last month’s median BC forecast of the same variable for the same future subperiod (red). Panel B 
reports the SPF median forecast of  four-quarter-ahead real GDP growth (blue) along with the most recent median 
BC forecast of the same variable for the same future subperiod (red). The most recent BC forecast is taken from the 
panel available on the closest month prior to the SPF survey deadline day, typically about two weeks in advance. 
The sample spans 1995: I–2018:II.
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distribution from observing the most recent BC survey. These plots are consistent 
with the idea that professional forecasters have access to reliable observable proxies 
for their time  t  location in the professional forecast distribution.

We also argue that  percentile-level analyses are likely to be a more plausible 
description of the empirical specifications actually employed by professional fore-
casters. There are well-documented caveats with the assignment of individual iden-
tification numbers to panelists who change their place of employment but remain in 
the survey. When panelists change places of employment, they often join entirely 
new forecasting teams with bespoke modeling practices and forecasting perspec-
tives.2 Panelists also go in and out of the surveys, with sometimes extended gaps in 
their participation. Under these circumstances the use of types is likely to be more 
natural in an econometric modeling context than specifications based on a sporadic 
history of individual forecaster’s own predictions.

We emphasize that our approach does not require, nor do we assume, that fore-
casters have a  time-invariant type. As long as they know their contemporaneous 
type, the approach described below works even if respondents move around in the 
distribution. This follows because the  one-period lagged values of every percentile’s 
forecast are publicly available information, information that we find an efficient 
forecast would typically place  nonzero weight on. Thus, a respondent can always 
ask how her time  t  type would have done historically by appending her current fore-
cast onto the appropriate historical series.

With this in mind, we acknowledge that a core assumption of some economic 
theories is that individuals do not know their “rank” in the relevant  cross-sectional 
distribution, in which case their “rank beliefs” can be important determinants of 
equilibria (e.g., Morris, Shin, and Yildiz 2016). We assess below the empirical rele-
vance of such rank beliefs for our measured belief distortions, by comparing results 
using our baseline machine specifications with those from an alternative benchmark 
that uses the union of every type’s forecast at time  t. 

A second aspect of the methodology pertains to our overall information process-
ing approach. In order to identify possible distortions in beliefs, it is imperative that 
the benchmark model of belief formation use large and varied real time information 
sets, so that our measure of distortion does not miss pertinent information that could 
have been known to survey respondents, or pertain only to models with a small num-
ber of arbitrarily chosen information variables. To address this challenge, we take 
a  two-pronged approach that combines diffusion index estimation with machine 
learning. Diffusion index forecasting, wherein a relatively small number of dynamic 
factors are estimated from hundreds of economic  time series, has become common 
in  data-rich environments, following on a long line of prior studies showing that the 
approach improves prediction accuracy in a manner similar to  model averaging.3 
Diffusion indexes are also useful because some forms of nonlinearities are readily 
handled by including polynomial functions of estimated dynamic factors, or by 
forming additional factors from polynomials of the raw data. We use estimated 

2 For example, see the memo “Caveats on Using the Individual Identification Numbers in the Survey of 
Professional Forecasters,” posted at philadelphiafed.org.

3 An incomplete list of this literature includes Stock and Watson (1989, 1991, 2002a, 2002b, 2006); Ludvigson 
and Ng (2007, 2009, 2010).

http://philadelphiafed.org
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factors as part of a dynamic machine learning algorithm of regularized estimation 
that chooses shrinkage and sparsity by optimally trading off the costs of down-
weighting information against the benefits of reduced parameter estimation error.4 
The diffusion index aspect of our methodology is standard, so we cover this step in 
the online Appendix, focusing below on the dynamic machine learning framework.

B. Machine Efficient Benchmark

Let   y  j,t+h    generically denote an economic time series indexed by  j  whose value 
in period  h ≥ 1  a survey forecaster is asked to predict at time  t . Let   픽  t  

 (i)    generically 
denote a survey forecast made at time  t  and let superscript   (i)   denote the ith  respondent- 
type, where  i  denotes the respondent located at the  i th percentile of the survey forecast 
distribution, i.e., “ i = 65 ” refers to the belief of the respondent at the  sixty-fifth percen-
tile. Thus   픽  t  

(65)  [ y  j,t+h  ]   denotes the survey expectation of   y  j,t+h    that is formed at time  t  by 
the respondent at the  sixty-fifth percentile of the survey distribution.

Let   x  t  C  =  ( x  1t  C , …,  x  Nt  C  )  ′ generically denote a dataset of economic information 
in some category  C  that is available for  real-time analysis. We assume that   x  it  C   has 
an approximate factor structure as detailed in the online Appendix, where   G  t  C   is an   
r  G   × 1  vector of latent common factors (“diffusion indexes”) with   Λ  i  C   a correspond-
ing   r  C   × 1  vector of latent factor loadings.

Collect all factors from different datasets of category  C , as well as nonlinear 
components (polynomials of factors and factors formed from polynomials of raw 
data) into a single   r  G    dimensional vector   G t   . Let    G ˆ   t    denote consistent estimates of 
a rotation of   G t    and let the   r  W    dimensional vector   W t    contain additional  nonfactor 
information that will be specified below. Finally, let   Z jt   ≡  ( y  j,t  ,   G ˆ    t  ′  ,  W  jt  ′  )  ′ be a  
 r = 1 +  r  G   +  r  W    vector which collects the data at time  t  and let  
   jt   ≡  ( y  j,t  , …,  y  j,t− p  y    ,   G ˆ    t  ′  , …,   G ˆ    t− p  G    ′  ,  W  jt  ′  , …,  W  jt− p  W    ′  )  ′ be a vector of contempora-
neous and lagged values of   𝐙 jt   , where   p  y  ,  p  G  ,  p  W    denote the total number of lags of   
y  j,t  ,   G ˆ    t  ′  ,  W  jt  ′  ,  respectively. Even with the use of factors,    jt    can be of high dimension.

With these data in hand, consider the following machine learning empirical spec-
ification for forecasting   y  j,t+h    given information at time  t , to be benchmarked against 
the time  t  survey forecast of  respondent-type  i :

(1)   y  j,t+h   =  α  jh  
 (i) 

  +  β  jh 픽  
 (i)     픽  t  

 (i) 
  [ y  j,t+h  ]  +  B  jh   (i) ′     jt   +  ϵ jt+h  , h ≥ 1 ,

where   α  jh  
 (i)   ,   β  jh 픽  

 (i)    , and   B  jh   (i)     are parameters to be estimated, and where   B  jh   (i)     is  K × 1 , 
with  K = r +  p  y   +  p  G   ·  r  G   +  p  W   ·  r  W   , the number of  right-hand-side variables 
other than   픽  t  

 (i)   . Equation (1) is estimated using machine learning tools, as dis-
cussed below.

4 It is straightforward to verify using hold-out samples and/or artificial data that combining diffusion index 
estimation with machine learning is often better than doing either one in isolation, for two reasons. First, the 
optimal number of factors can still be large enough that there are clear efficiency gains to using machine learning 
techniques for choosing shrinkage and sparsity even when all predictors are factors. Second, it is well known that 
the best approaches for choosing sparsity, such as those that use the   L   1   “lasso” penalty, work poorly in the context 
of correlated regressors. Since our raw data are correlated, we have also verified that our elastic net estimator, 
which utilizes an   L   1   penalty, works better when the data are first transformed into orthogonal diffusion indexes 
before estimation. This latter finding is consistent with results in Kozak, Nagel, and Santosh (2020).
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Estimation of (1) delivers a time  t  machine “belief” about   y  j,t+h   , namely the 
machine forecast, denoted   피  t  

 (i)   [ y  j,t+h  ]  . We define the machine efficient benchmark as 
a set of parameter restrictions that would imply that the survey forecaster in the  i th 
percentile processes all available information at time  t  as efficiently as the machine. 
This benchmark corresponds to the following parameter restrictions:

(2)   β  jh 픽  
 (i)    = 1;  B  jh    (i)    = 0;  α  jh  

 (i)   = 0. 

Systematic expectational errors in the survey forecast are revealed by deviations 
from the benchmark above, generated by a  misweighting of information contained 

in    jt    or “1” (i.e.,   B  jh    (i)    ≠ 0  or   α  jh  
 (i)   ≠ 0 ) and/or the survey respondent’s own  

forecast,   픽  t  
 (i)   [ y  j,t+h  ]   (i.e.,   β  j 픽  

 (i)   ≠ 1 ). Machine estimates    ̂  β    j 픽  
 (i) 

  ≠ 1  imply that the 

survey response   픽  t  
 (i)   [ y  j,t+h  ]   could have been improved by giving it more or less 

weight relative to other objective economic information than the implicit weight of 
one given this response by the survey respondent. The machine can correct system-
atic errors in the human forecast by optimally  reweighting the marginal information 
contained in   픽  t  

 (i)   [ y  j,t+h  ]   against the publicly available information contained in    jt    
that all survey respondents also had access to.

Three points about the machine efficient benchmark bear emphasis. First, it is 
a  type-specific benchmark that adopts the perspective of a forecaster who is in the 
i th percentile of the survey forecast distribution in period  t . The machine is given 
any information that the survey forecaster in the  i th percentile could have observed 
at time  t , including her own forecast   픽  t  

 (i)   [ y  j,t+h  ]  , as well as publicly available infor-
mation contained in    jt   , where the latter includes lagged values of all other type’s 
forecasts, since all surveys publish their results shortly after the response deadline. 
This approach explicitly recognizes that agents might have private information or 
use judgment, and this needs to be taken into account in the quantification of fore-
caster bias. Otherwise, the benchmark model of beliefs that we apply to measure 
any distortion in survey responses will have omitted a possibly pertinent piece of the 
time  t  information set of agents, leading to an erroneous measurement of systematic 
expectational errors. The next subsection argues that an artificial intelligence algo-
rithm can effectively control for that intangible information using a specification, 
such as the one here, that conditions on the current survey forecast. For now we note 
that, even if we don’t allow the machine to see the  i th percentile’s contemporaneous 
forecast and instead proxy for that observation using publicly available data prior to  
t , our findings on forecaster bias are very similar.5 But we find that specification to 
be far less interesting, both because it necessarily provides an inaccurate account of 
any forecaster bias, and because it is silent on the possible role of private informa-
tion or judgment in belief distortions.

Second, the machine is given only that information at time  t  that the survey 
 respondent-type in the  i th percentile could have observed at time  t , and nothing 
more. This is important because superior machine forecasts formed with ex post 
information that we cannot be certain the survey respondent could have observed 

5 See Table A13 of the online Appendix.
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in real time might simply reflect the benefit of hindsight, rather than genuine sys-
tematic expectational error. For this reason, some popular techniques for forming 
benchmarks to measure forecaster bias, such as meta forecasts that pool multiple 
survey forecasts at time  t  to form a meta forecast, are ruled out by our procedure 
since we adhere to the principle of providing the machine only that information that 
we can verify was publicly available at the time of the survey forecast. This follows 
because the time  t  forecast distribution is publicly released only after all the analysts 
turn in their forecasts.

Third, since in principle all survey  respondent-types could have accessed 
the same information given the machine, the time  t  machine forecast serves as a 
 real-time check on whether the survey response may be making a demonstrable 
systematic expectational error. In practice, this artificial intelligence approach could 
be employed within institutions to check for, and possibly correct, biases in profes-
sional forecasts.

We compare below the forecast accuracy of the machine benchmark with the sur-
vey responses. If the machine systematically improves forecasts on average over an 
extended evaluation sample, we take that as evidence of belief distortion, or “bias” 
for short. In this event, we compute a dynamic measure of a survey  respondent-type’s 
belief distortion by taking the difference between the survey forecast and the machine 
forecast,   피  t  

 (i)   [ y  j,t+h  ]  , where we denote the bias of forecaster  i  at time  t  as

(3)  bia s  j,t  
 (i)   ≡  픽  t  

 (i)   [ y  j,t+h  ]  −  피  t  
 (i)   [ y  j,t+h  ]  .

Observe that  bia s  j,t  
 (i)    captures ex ante expectational errors, not ex post forecast errors, 

or “mistakes.” In particular, bias in expectations is measured relative to the machine 
forecast, not relative to an ex post outcome. One implication of this is that it is pos-
sible that every  respondent-type is biased  vis-à-vis the machine ex ante, even though 
there will always be some  respondent-type that is “right” ex post.

C. A Model of Private and Public Signals

Our approach explicitly recognizes that agents (most obviously professional 
forecasters) might have private information or use judgment, and this needs to be 
taken into account in the quantification of forecaster bias. Otherwise, the bench-
mark model of beliefs that we apply to measure any distortion in survey responses 
will have omitted a possibly pertinent piece of the time  t  information set of agents, 
thereby distorting our measurement of systematic expectational errors. In this sub-
section we argue that an artificial intelligence algorithm can effectively control for 
that intangible information using a specification that conditions on the current sur-
vey forecast. To do so, we present a model of forecasters as forming an overall 
prediction by combining a statistical forecast based on public information (a public 
signal) with a judgmental or private component based on information intangible to 
the machine (a private signal). This also facilitates an interpretation of the machine 

estimates of the parameters   α  jh  
 (i)   ,   β  jh 픽  

 (i)    , and   B  jh    (i)    .
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We suppose that forecasters form an overall prediction by combining a statistical 
forecast based on public information (a public signal) with a judgmental component 
based on information intangible to the machine (a private signal). Let  x  be publicly 
available information  and let  z  be a private signal about an unknown variable  y.  
Suppose these variables are related to one another according to the system

(4)  x ∼ iid (0,  σ  x  2 )  ,

            y = αx +  u  2  ,  u  2   ∼ N (0,  σ  2  2 )  ,

            z = y +  u  1  ,  u  1   ∼ N (0,  σ  1  2 ) , 

where  α  is a parameter describing the mapping from  x  to  y , and where  x ,   u  1  ,  and   
u  2    are i.i.d. and mutually uncorrelated with one another. In what follows, we will 
interpret  y  as the future value of a variable being forecast,  z  as a private signal repre-
senting judgment or intangible information that a survey forecaster can observe but 
the machine cannot, and  x  as public information that serves both as a predictor and, 
via the mapping  αx , as a public signal. Note that  x  could also be a vector, while  αx  
is still a scalar. For example, if  y  is future inflation,  x  could be a measure of the out-
put gap, the central bank inflation target, and/or macro and financial factors formed 
from large datasets. The random variable   u  2    is the unforecastable component of  y  
and has the interpretation of a structural shock.

Conditional on observing both the private and public signals, the optimal forecast 
of  y  is

   피 o   [y | αx, z]  = γz +  (1 − γ) αx, γ ≡    σ  2  2  _ 
 σ  1  2  +  σ  2  2 

   =    σ  1  −2 / σ  2  −2  _  
1 +  σ  1  −2 / σ  2  −2 

   ,

where   σ  1  −2 / σ  2  −2   is the precision of the private signal relative to that of the public 
signal. More weight is given to the private signal when it is relatively more precise.

Suppose that a forecaster assigns weights to her private and public signals as 
follows:

  픽 =  γ   F z +  (1 −  γ   F  )  α   F x. 

The survey forecast  픽  is here interpreted as a prediction based partly on the 
respondent’s statistical model using public information (  α   F x ) and partly on a pri-
vate signal  z . The case   α   F  ≠ α  arises when the forecaster inefficiently combines 
the public information when forecasting  y , which could occur if she is inattentive to 
some variables and/or overly attentive to others.

How might   γ   F   be determined? One possibility is that the forecaster chooses  픽  
based on what would be optimal given the system (4), but employs incorrect esti-
mates   σ  1F  2   ≠  σ  1  2  ,   α   F  ≠ α , in which case we have

   γ   F  =    σ  1F  −2 / σ  2F  −2  _  
1 +  σ  1F  −2 / σ  2F  −2 

   ,
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where   σ  1F  −2 / σ  2F  −2   is the ratio of her estimated private signal precision to her estimated 
public signal precision. Note that if the forecaster inefficiently combines the public 
information, i.e.,   α   F  ≠ α , she will have effectively  underestimated the precision 
of the public signal, leading to   σ  2F  −2  <  σ  2  −2  . At the same time, it is possible that   
γ   F  = γ  even if   α   F  ≠ α  if the forecaster  underestimates the precision of her private 
signal by exactly the right amount.

Now consider the machine forecast  피  of  y , which is based on both the public 
information  x  and the survey forecast  픽 :

  피 =  ̂  β  픽 +  ̂  B  x =  ̂  β   [ γ   F z +  (1 −  γ   F  )  α   F x]  +  ̂  B  x, 

where   ̂  β    and   ̂  B    are coefficient estimates. Although the machine cannot directly 
observe the private signal  z , it can still learn about the weight assigned to it 
by the forecaster from observing  픽 . The machine estimates the coefficients  
 b ≡  (β, B)  ′ from a regression of  y  on   (픽, x)  ′. The online Appendix proves that this 
estimator results in the values:

   ̂  β   =   γ __ 
 γ   F 

    ,   ̂  B   =  (1 − γ) α −  (  γ __ 
 γ   F 

   − γ)  α   F . 

The machine will set   ̂  β   < 1  (  ̂  β   > 1 ) if and only if the forecaster gives more (less) 
weight   γ   F   to her private signal  z  than the correct weight based on its true relative preci-
sion   σ  1  −2 / σ  2  −2  . Even though the private signal component of the survey respondent’s 
forecast is not directly observable by the machine, an artificial intelligence algo-
rithm can effectively control for that intangible information by conditioning on   픽 t   . 
The machine can then correct for inefficiencies in the survey forecast by setting   
ˆ β   ≠ 1  and/or   ̂  B   ≠ 0 .

In the framework above, the case of   γ   F /γ > 1  resulting in   ̂  β   < 1 , could happen 
for two reasons. First, the forecaster might  overestimate the precision of her private 
signal, i.e.,   σ  1F  −2  >  σ  1  −2  , a circumstance often referred to as “overconfidence”  in 
the behavioral economics literature. Second, the forecaster might inefficiently com-
bine the public information, i.e.,   α   F  ≠ α , so that she effectively  underestimates 
the precision of her public signal, i.e.,   σ  2F  −2  <  σ  2  −2  . Either way,   ̂  β   < 1  indicates 
an overreliance, in relative terms, on the private or judgmental component of her 
forecast.6 We return to a discussion of this case below when we present the machine 
parameter estimates.

D. Estimator

We now describe the machine estimation used to quantify any belief distortions. 
To do so, let us simplify notation by collecting all the independent variables and 

6 In principle   β ˆ   < 1  could also occur if there is idiosyncratic measurement error in the survey responses. While 
possible, we argue that this is unlikely to be a plausible explanation for the findings reported below, for two reasons. 

First, such an interpretation is implausible for professional forecasters where    β ˆ    j 픽, t  
 (i)     is nonetheless quite substantially  

below unity on average. Second, measurement errors should wash out in the mean survey forecast, yet estimates of 
this parameter for the mean, and of the average bias, are similar to those for the median.
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coefficients on the  right-hand side of (1) into a single matrix and vector and writing 
the machine model as

(5)   y  j,t+h   =    t  ′    β  jh  
 (i)   +  ϵ jt+h   ,

where    t   =  (1,  픽  t  
 (i)   [ y  j,t+h  ] ,   jt  ) ′  and   β  jh  

 (i)   ≡  ( α  jh  
 (i)  ,  β  jh 픽  

 (i)   ,  ( B  jh    (i)   ) )  ′.

Let   X T   =  ( y  j,1  , …  y  j,T  , …    1  ′  , …,    T  ′  )  ′ be the vector containing all observations 
in a sample of size  T . We consider estimators of   β  jh  

 (i)    that take the form

    β ˆ    jh  
 (i) 

  = m ( X T  ,  λ    (i)  ) , 

where  m ( X T  ,  λ    (i)  )   defines an estimator as a function of the data   X T    and a  nonnegative 
regularization or “tuning” parameter vector   λ    (i)    estimated using  cross-validation. 
The values of   λ    (i)   , which will be estimated dynamically over time, determine the 
optimal shrinkage and sparsity of the time  t  machine specification. Denote this lat-

ter estimator    λ ˆ    t  
 (i)    and denote the combined final estimator    β ˆ    jh  

 (i)   ( X T  ,   λ ˆ    t  
 (i)  )  . Our main 

approach uses the elastic net (EN) estimator, where   λ    (i)    is a bivariate vector that 
uses dual lasso and ridge penalties to achieve both shrinkage and sparsity.7

The estimation of (5) is repeated sequentially in rolling subsamples, with param-
eters estimated from information known at time  t  used to predict variables   y  j,t+h    in 
subsequent periods. This leads to a sequence of machine efficient beliefs about   y  j,t+h   .  
Denote the coefficients and regularization parameters obtained from an estima-

tion conducted with information through time  t  as    β ˆ    jh,t  
 (i)     and    λ ˆ    t  

 (i)   , respectively. Note 

that the time  t  subscripts on    β ˆ    jh,t  
 (i)     and    λ ˆ    t  

 (i)    are used to denote one in a sequence of  
 time-invariant parameter estimates obtained from rolling subsamples, rather than 
estimates that vary over time within a sample. Likewise, we shall denote the time  t  
machine belief about   y  j,t+h    as   피  t  

 (i)   [ y  j,t+h  ]  , defined by

   피  t  
 (i)   [ y  j,t+h  ]  ≡    t  ′     β ˆ    jh,t  

 (i) 
   ( X T  ,   λ ˆ    t  

 (i)  ) . 

Forecast errors are differentially denoted for the survey and machine

   survey error  t+h  
 (i)    =  픽  t  

 (i)   [ y  j,t+h  ]  −  y  j,t+h   ,

   machine error  t+h  
 (i)    =  피  t  

 (i)   [ y  j,t+h  ]  −  y  j,t+h  . 

Survey and machine mean squared errors (MSEs) are denoted with  픽  and  피  sub-
scripts, i.e.,

(6)  survey MSE ≡ MS E  픽   =  (1/P)     i=1  P    ( survey error  t+h  
 (i)   )    

2

  

(7)  machine MSE ≡ MS E  피   =  (1/P)     i=1  P    ( machine error  t+h  
 (i)   )    

2

  ,

7 We have also implemented the approach in simulated data and  hold-out samples for lasso and ridge separately, 
for random forest, and for empirical Bayes linear regression. The EN estimator was the best performing, followed 
by lasso, while random forest and Bayesian regression performed poorly.
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where  P  is the length of the forecast evaluation sample. To reduce notation clutter, 
we leave off superscripts “  (i)  ” in the definitions above, but the reader is reminded 
that these statistics also depend on the  respondent-type. Distortions in survey 
responses are quantified by the ratio  MS E  피  /MS E  픽    over an extended forecast eval-
uation sample of size  P . To uncover any belief distortions, the machine needs to 
solve a  high-dimensional, dynamic,  out-of-sample learning problem. We discuss our 
algorithm for doing so next.

E. Machine Learning Algorithm

This section discusses a novel machine learning algorithm developed to detect 
demonstrable, ex ante expectational errors in real time. This algorithm is explicitly 
designed to combat overfitting and cope with structural change in a dynamic setting. 
The full estimation and evaluation procedure involves iterating on the following 
steps, which are described in greater detail in the online Appendix.

 (i) Sample Partitioning: At time  t , a prior training sample of size    
~

 T    is partitioned 
into two subsample windows: an “estimation” subsample consisting of the first  
  T  E    observations, and a  hold-out “validation” subsample of   T  V    subsequent 
observations, i.e.,    

~
 T   =  T  E   +  T  V   .

 (ii)  In-Sample Estimation: Initial estimates of   β    (i)    are obtained with the EN 
estimator using observations  1, …,  T  E   , given an arbitrary fixed ( nonrandom) 
starting value for   λ  t  

 (i)   . Denote this initial estimate   β   T  E    
∗ (i)   ( X  T  E    ,  λ  t  

 (i)  ) ,  where “       ∗   ” 

denotes the value of the estimator given an arbitrary   λ  t  
 (i)   .

 (iii)  Cross-Validation: The regularization parameter   λ  t  
 (i)    is estimated by mini-

mizing  mean squared loss   ( λ  t  
 (i)  ,  T  E  ,  T  V  )   over pseudo  out-of-sample fore-

cast errors generated from rolling regressions through the validation sample, 
where

(8)   ( λ  t  
 (i)  ,  T  E  ,  T  V  )  ≡   1 _  T  V   − h       τ = T  E    

 T  E   +  T  V   −h
    (   τ  ′    β  jh,τ  

∗ (i)   ( X  T  E    ,  λ  t  
 (i)  )  −  y  j,τ+h  )    

2

 , 

  and where   β  jh,τ  
∗ (i)   ( X  T  E    ,  λ  t  

 (i)  )   is the time  τ  EN estimate of   β  jh  
 (i)    given   λ  t  

 (i)    and data 
through time  τ  in a sample of size   T  E   .

 (iv) Steps ( i)–(iii) are repeated for new values of   T  E   ∈  {   T ¯   E  , …,   
_

 T   E  }   and  
  T  V   ∈  {   T ¯   V  , …,   

_
 T   V  }   such that alternative partitions satisfy   T  E   +  T  V   ≤   

~
 T   ,   

where shorter window lengths remove consecutive observations at the start 
of the prior sample. The final machine estimator of   β  jh,t  

 (i)    ( X  T  E    ,  λ  t  
 (i)  )   is based 

on the most recent    ̂  T   E    observations where   {  λ ˆ    t  
 (i)  ,   ̂  T   E  ,   ̂  T   V  }  =  arg min  λ    (i)  , T  E  , T  V      

 ( λ  t  
 (i)  ,  T  E  ,  T  V  )   and is denoted    β ˆ    jh,t  

 (i) 
   ( X   ̂  T   E    ,   λ ˆ    t  

 (i)  )  .
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 (v)  Out-of-Sample Prediction: The values of the regressors at time  t  are used to 

make a true  out-of-sample prediction of   y  t+h   , using    β ˆ    jh,t  
 (i) 

   ( X   ̂  T   E    ,   λ ˆ    t  
 (i)  )   and the 

machine forecast error   y  t+h   −    t  ′     β ˆ    jh,t  
 (i) 

   ( X   ̂  T   E    ,   λ ˆ    t  
 (i)  )   stored.

 (vi) Roll Forward and Repeat: The prior sample of data is rolled forward 
one period, and steps ( i)–(v) are repeated. This continues until the last 
 out-of-sample forecast is made for   y  j,T   , where  T  is the last period of our 
sample.

Referring back to the notation in (6) and (7),  MS E  피    is computed by averag-
ing across the sequence of squared forecast errors in the true  out-of-sample fore-
casting step (v) for periods  t =  (  ~ T   + h) , …, T.  We refer to this subperiod as the 
external forecast evaluation sample.

Several points about the procedure above bear emphasizing. First, the algorithm 
ensures that the machine forecast selected from step (iv) can only differ from the 
survey forecast if it demonstrably improves pseudo  out-of-sample prediction in 
the rolling training samples prior to making a true  out-of-sample forecast in step 
(v). Otherwise, the machine adopts the survey forecast. It follows that the true 
 out-of-sample forecasts of the machine recorded in step (v) can differ from those of 
the survey only if demonstrable, ex ante biases are detected. The resulting measure 
of belief distortion therefore explicitly excludes ex post mistakes that the machine 
algorithm could only have understood with hindsight. An implication of this ex ante 
approach is that more than one type can show no bias if the machine is unable to 
detect patterns in extraneous economic data that can be exploited in real time to 
improve forecasts. We quantify the overall magnitude of forecaster bias with the 
ratio  MS E   피  /MS E   픽    taken over the evaluation sample.

Second, the machine algorithm is repeated for each  i  and for each  t  in the eval-
uation sample. This can be important for all the parameter estimates but especially 
so for the estimate of the intercept, which functions as a latent  time-varying mean.

Third, each new training renews the optimized selection of  in-sample estimation 
and validation sample windows lengths, innovating on traditional machine learning 
approaches by paying close attention to the time structure of data. This is important 
because, in a dynamic setting subject to possible structural change, no single set of 
window lengths is likely to work best in all time periods.8 The algorithm developed 
here instead asks the machine to choose both the optimal estimation window and the 
optimal validation window for determining shrinkage and sparsity, dynamically. We 
discuss this further below.

Fourth, the cumulation of true  out-of-sample forecast errors from step (v) serves 
as an external validation step that exists outside of the optimization loop. It is cru-
cial that the number of forecast error observations aggregated from this step be 
large enough so that the evidence on relative forecast accuracy is not the result 
of a few random outliers. For this reason, we require that our external evaluation 
samples from this step be at least 84 quarters long for all machine specifications. 

8 See Giacomini and White (2006) and Pesaran and Timmermann (2007) for extensive evidence related to these 
themes.
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At the same time, we must balance this imperative against two others: the need 
to reserve a minimum number of observations to do estimation and training, and, 
because there are differences in data availability across the surveys, the need to 
compare relative forecast using roughly comparable time frames. For the SPF, data 
on inflation and GDP growth forecasts are available from 1969:III to 2018:III. Thus 
the machine can partition a prior sample up to size    

~
 T   = 98  quarters in every step 

of the  recursion and still produce an external evaluation sample with 97 quarterly 
observations that spans 1995:I to 2018:II. In this case, the first true  out-of-sample 
forecast of  four-quarter-ahead outcomes is recorded for the period 1994:I to 1995:I. 
For SOC, both inflation and GDP growth forecast data are available from 1978:I to 
2018:II, while for BC, inflation forecasts are available from 1986:I to 2018:II, and 
GDP forecasts are available from 1984:III to 2018:II. Since these surveys extend 
less far backward in time, estimation and training must be accomplished on smaller 
prior sample sizes    

~
 T    in the early recursions in order to ensure an external evaluation 

sample of at least 84 observations. But it is still possible to allow for reasonable min-
imal prior sample sizes at each step in these recursions, while nonetheless ending up 
with external evaluation samples of at least 84 quarters that cover roughly compara-
ble time periods. Our external evaluation sample for the SOC surveys consists of 97 
quarterly observations and span 1995:I to 2018:II. For the BC surveys the external 
evaluation sample for inflation forecasts consists of 84 quarterly observations and 
spans 1997:III to 2018:II, while that for the GDP growth forecasts consists of 89 
quarterly observations and spans 1996: I to 2018:II.

Our approach of dynamically selecting estimation and  cross-validation window 
lengths to minimize the pseudo MSEs merits further discussion. As noted previ-
ously, it is crucial for our investigation that both of these specification choices be 
made on an ex ante basis. This presents offsetting considerations. On the one hand, 
in a dynamic setting subject to structural change, no single value for   T  E    or   T  V    is 
likely to work best for all time, so it seems important to allow for some flexibil-
ity. On the other hand, allowing completely free reign in the choice of window 
lengths could cause the ranking of the forecasting specifications based on pseudo 
MSEs to be so affected by random variations that you’d often choose a specifi-
cation that breaks down out of sample. We address these trade-offs in two ways. 
First, we allow for a limited degree of choice across five different window lengths 
for the validation step and ten different window lengths for estimation. The pre-
cise grids (in quarters) are   T  V   =  {12, 16, 20, 24, 28}   and   T  E   =  {24, 28, 32, 36, 40, 
44, 48, 52, 56, 60}  . Second, we always use the last   T  V    observations to do the pseudo 
 out-of-sample forecast evaluation, implying that each of our validation subsamples 
has the same end point    

~
 T    immediately preceding the date over which the machine 

makes a true  out-of-sample forecast. This means that there is substantial overlap in 
the observations that make up the different validation subsamples of length   T  V   . This 
overlap further limits the potential for highly random variations that can arise from 
choosing   T  V    to minimize the pseudo MSE.9 In important earlier work, Pesaran 

9 This may be contrasted with traditional “ K-fold”  cross-validation techniques, which partition a sample ran-
domly, leading to tuning parameters that are chosen partly on the basis of how well the future predicts the past. 
Table A2 of the online Appendix shows that the machine performs poorly when it is trained using traditional  K-fold 
 cross-validation techniques.
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and Timmermann (2007) propose choosing the estimation window length   T  E    by 
minimizing the pseudo MSE over the validation sample, as we do, but unlike our 
approach they fix   T  V  .  Unfortunately, neither econometric theory nor Pesaran and 
Timmermann (2007) offer any practical guidance on how to choose   T  V    on an ex ante 
basis, and in econometric practice the actual choices appear to be somewhat arbi-
trary. The procedure we propose, of allowing a limited degree of flexibility in the 
selection of both windows, can be executed in practice by exploiting prior samples 
of data to determine judicious grids for the window lengths. This training could be 
implemented repeatedly over time as it evolves.

F. Switching Model

Since at least the groundbreaking contribution of Hamilton (1989), it has been 
well known that aggregate output growth is well described by a process that evolves 
differently across distinct economic states associated with recessions and expan-
sions. A large subsequent literature treats models with regime changes as part of 
the standard forecasting toolbox for output growth (e.g., Chauvet and Potter 2013). 
Furthermore, by the  mid-1990s, a large body of evidence had accumulated that the 
slope of the term structure of interest rates had strong predictive power for the US 
business cycle. Specifically, inversions or a flattening of the yield curve typically 
anticipate a sharp downturn in economic growth. By the  mid-1990s it had become a 
well established practice of many professional forecasters to switch to simpler fore-
casting specifications for economic growth that focused almost exclusively on yield 
spread information whenever the term structure was flat or downward sloping.10 By 
contrast, there was much less evidence that term spreads were useful in forecasting 
inflation at any time in the business cycle.

Putting this all together, it is clear that a forecaster operating in the  mid-1990s 
would have had access to a large body of evidence indicating that (i) output growth 
behaves differently in recessions than in expansions, and (ii) turning points are often 
anticipated by a flat or inverted yield curve. Based on this prior knowledge, the 
machine efficient benchmark is specified to follow a simple switching model for 
output growth—but not inflation—for forecasts starting in 1995:I.

To implement this idea—for forecasting GDP growth only—we combine the 
notion of distinct regimes with the predictive power of the term structure slope using 
a threshold model. This feature allows the machine to choose in real time whether to 
switch to a simpler, recession specification. The threshold aspect of the GDP growth 
forecasting specifications works as follows:

    
Δgd p  j,t+h   =  α  jh  

 (i)   +  β  jh픽  
 (i)     픽  t  

 (i)   [ y  j,t+h  ]  +  B  j   (i) ′    jt   +  ϵ jt+h    if slop e  kt   >   ̂  tr  kt  ,        
   Δgd p  j,t+h   =  B  kt    I  kt  

  
if slop e  kt   ≤   ̂  tr  kt  ,

   

where   B  kt    is a parameter and   I  kt    is a dummy variable that depends on a yield curve 
measure at time  t .

10 See Harvey (1989); Estrella and Hardouvelis (1990, 1991); Plosser and Rouwenhorst (1994); Haubrich and 
Dombrosky (1996); Kozicki (1997); Dotsey (1998); and Estrella and Mishkin (1998).
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At each point in time, the machine chooses whether to use the “ normal-times” 
specification (first row) or the “recession” specification (second row). The 
 normal-times specification is based on the machine algorithm discussed in the pre-
vious section. The recession specification is chosen whenever  slop e  kt   <   ̂  tr  kt   , where  
slop e  kt    is a yield spread measure at time  t  and    ̂  tr  kt    is a threshold. We consider three 
different yield curve slope indicators, indexed by  k : the  10-year minus 3-month 
Treasury spread   (10y3m)  , the  10-year minus 1-year Treasury spread   (10y1y)   , and 
the  10-year minus 2-year Treasury spread   (10y2y)   . The machine uses past data to 
run a regression of GDP growth  h  quarters ahead ( Δgd p  t+h   ) on a dummy variable   
I  kt    that equals one when  slop e  kt   ≤   t r  kt    and zero otherwise. The machine searches 
in real time for the specific threshold    ̂  tr  kt    and the yield spread indicator  slop e  kt    that 
maximizes the   R   2   of this regression. The machine repeatedly  reoptimizes the choice 
of both    ̂  tr  kt   , and the specific measure of the term spread ( 10y3m ,  10y1y,  or  10y2y  ) 
based on  real-time forecasting regressions of GDP growth on   I  kt    using expanding 
windows of data up to time  t  and beginning in 1976:III, when the data on the 2-year 
Treasury bill rate is first available. The time  t  recession specification forecast of 
GDP growth in  t + h  is then simply the average GDP growth over all periods where   
I  t   = 1  in a sample spanning 1976:III to  t .

Figure 2 reports the  real-time   R   2  s from the  expanding-window regressions of 
GDP growth at  t + h  on   I  kt    using the different measures of the term spread. The fig-
ure shows that regressions using the  10y2y  dummies are almost always chosen by the 
machine because that specification delivers the highest  real-time predictive power 
for GDP growth in almost all periods of our evaluation sample, including those just 
prior to the two recessions in the sample that occurred in 2001 and  2007–2009.

It is worth noting, however, that the only time over the evaluation samples that the 
recession specification is triggered is just prior to the 2001 recession. In particular, 
there is no switch triggered prior to the Great Recession. This happens because all 
term spreads exhibited a secular decline between the two recessions, so that by 2007 
the threshold values commensurate with a forecast of negative economic growth had 
also declined. At the same time, the declines in yield spreads prior to the  2007–2009 
recession were relatively modest by historical standards and thus never fell below 
the (lower)  real-time    ̂  tr  kt    thresholds. In contrast to the 2001 recession, yield spreads 
generally failed to signal the Great Recession, a structural shift that shows up in 
Figure 2 as a sharp drop in  real-time   R   2   statistics right after the recession.

III. Data

The data used for this study fall into several categories. For each category the 
sources and details are left to the online Appendix.

Survey Data.—The first data category is the survey data.
The SPF is a quarterly survey. Respondents provide both nowcasts and quarterly 

forecasts from one to four quarters ahead. We focus on the survey questions about 
the level of the GDP deflator (PGDP) and the level of real GDP. We use these data 
to construct forecasts of GDP growth, as explained in the online Appendix. We also 
use SPF forecasts of ten-year-ahead consumer price index (CPI) inflation as infor-
mation variables.
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The SOC asks households directly about inflation, and we use the questions on 
whether households expect prices to go up or down during the next 12 months, and 
by how much, to gauge their expectations about inflation. Following Curtin (2019), 
we take these forecasts to be most relevant for annual CPI inflation, and therefore 
compare SOC forecasts to actual outcomes for CPI inflation. Since the SOC doesn’t 
directly ask about GDP growth, we take the approach discussed in Curtin (2019) 
which is based on responses to question A7 in the SOC: “About a year from now, do 
you expect that in the country as a whole business conditions will be better, or worse 
than they are at present, or just about the same?” This qualitative economic forecast 
is converted to a point forecast for GDP growth by fitting a regression of future 
GDP growth data to the balance score for question A7 (percent respondents expect 
economy to improve – percent expect worsen + 100) using rolling regressions and 
 real-time GDP data.

For the BC survey, we use questions in which forecasters are asked to predict the 
average quarter-over-quarter percentage change in Real GDP and the GDP deflator, 
beginning with the current quarter and extending four to five quarters into the future.

For all surveys, we align the timing of survey response deadlines with  real-time 
data, so that the machine can only use data available in real time before the survey 
deadline.

Real-Time Macro Data.—A  real-time macro dataset provides observations 
on the  left-hand-side variables on which forecasts are formed obtained from the 

Figure 2.  Real-Time   R   2   with Optimal Thresholds

Notes: This figure reports the   R   2  s from  expanding-window regressions of GDP growth at  t  on a dummy variable  
  I  t−h   . The dummy variable   I  t    equals one if the term spread is below its  real-time   N  t   th percentile at time  t . The thresh-
old N    t    maximizes the   R   2   from the regression estimated at time  t . The real-time percentile of the term spread at time  
t  is computed using the data from 1976:III to time  t . The yellow line reports the results using term spread defined as 
 10-year Treasury bond rate minus  2-year rate. The red line uses  10-year rate minus  1-year rate. The blue line uses 
 10-year rate minus  3-month rate. NBER recessions are shown with gray shaded bars. The sample is 1995:I–2018:II.
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Federal Reserve Bank of Philadelphia’s  Real-Time Dataset. Following Coibion and 
Gorodnichenko (2015), to construct forecasts and forecast errors, we use the vintage 
of inflation and GDP growth data that are available four quarters after the period 
being forecast. We also use the  real-time macro data to form  real-time quarterly 
macro factors from a constructed dataset of  real-time quarterly macro variables 
observed on or before the day of the survey deadline at each date  t . The resulting 
 real-time macro dataset, contains observations on 92  real-time macro variables. Our 
real time macro variable dataset also include data on home and energy prices, which 
are not revised and so do not have multiple vintages. The complete list of macro 
variables is given in the online Appendix.

Monthly Financial Data.—To take into account financial market data, we form 
factors from a panel dataset of 147 monthly financial indicators that include val-
uation ratios, growth rates of aggregate dividends and prices, default and term 
spreads, yields on corporate bonds of different ratings grades, yields on Treasuries 
and yield spreads, and a broad  cross section of industry equity returns. We convert 
the monthly factors formed from the dataset into quarterly factors by using the first 
month’s observation for each quarter.

Daily Financial Data.—“ Up-to-the-forecast” financial market information is 
accounted for by using daily data on financial indicators up to one day before the 
survey respondents forecasts are due. The daily financial dataset includes series 
from five broad classes of financial assets: (i) commodities prices, (ii) corporate 
risk variables including a number of different credit spreads measuring default risk, 
(iii) equities, (iv) foreign exchange, and (v) government securities. In total, we use 
87 such series, 39 commodity and futures prices, 16 corporate risk series, 9 equity 
series plus implied volatility, 16 government securities, and 7 foreign exchange vari-
ables), with the complete set of variables reported in the online Appendix. In order 
to use both daily and quarterly data in our estimation, we combine diffusion index 
estimation of daily financial factors with mixed data sampling frequency techniques, 
described in detail in the online Appendix.

Additional Nonfactor Data.—A number of other  nonfactor variables are also 
included in the machine model in   W  jt  ′   . These include the  i th percentile’s own 
nowcast for the variable being forecast, lags of the  i th percentile’s own forecasts 
and those of other percentiles,  higher-order  cross-sectional moments of the lagged 
forecast distributions, several autoregressive lags of the  left-hand-side variables, 
 long-term trend inflation measures, and measures of detrended employment and 
GDP (Hamilton 2018).

In all, once factors are formed the machine model entertains a total of 68 pre-
dictor variables for inflation and 72 predictor variables for GDP growth, before the 
machine chooses sparsity. We refer below to estimated factors with an economic 
name. The economic name makes use of group classifications for individual series 
and output from time series regressions of individual series onto estimated fac-
tors, for each time period in our evaluation sample. For example, if regressions 
of  nonfarm payrolls onto the first common macro factor from the  real-time macro 
panel dataset exhibits the highest average (across all time periods of our evaluation 
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sample) marginal   R   2  , then that factor is labeled an “employment” factor and nor-
malized so that it increases when  nonfarm payrolls increase.

IV. Results

This section reports results using our estimates of belief distortions across dif-
ferent  respondent-types, surveys, and variables. In all cases, we focus on  h = 4  
 quarter-ahead forecasts.

A. Forecast Comparison

We present a comparison of the accuracy of forecasts made by the machine 
benchmark and the survey respondents over the external evaluation samples. Table 
1 reports the ratio of the machine  MS E   피    to the survey  MS E   픽    for inflation and GDP 
growth for all three surveys over their respective external evaluation samples, along 
with several other results. We discuss these in turn.

First consider the average predictive accuracy of the machine versus the 
 forecaster-type over the external evaluation sample. The top panel of Table 1 shows 
that the machine model performs better than the survey forecasts of inflation for 
all surveys and all  respondent-types as measured by the ratio  MS E   피  /MS E   픽   , which 
is less than one in all cases, sometimes by large amounts. To put this ratio in the 
same units as an  in-sample   R   2  , the table also reports an  out-of-sample   R   2   for the 
machine  vis-à-vis the survey as   R   OOS  2   ≡ 1 − MS E   피  /MS E   픽   . The overall magnitude 
by which the machine model improves on the survey forecasts is in most cases siz-
able, which is notable since survey forecasts of inflation are known to be difficult 
to beat or even match by statistical models  out-of-sample, as discussed above. For 
example, the ratio  MS E   피  /MS E   픽    for the median SPF forecast is  0.85 . These ratios 
are similar for the median BC survey, as shown in the last panel, where in this case  
 MS E   피  /MS E   픽    is 0.84. In general, the magnitude of measured belief distortions about 
future inflation is much larger for SOC respondents than for the SPF and BC respon-
dents, as shown in the middle panel. The SOC median  MS E   피  /MS E   픽    ratio is 0.62, 
respectively, implying large  out-of-sample   R   2   statistics.11

For GDP growth, the lower panel of Table  1 shows that machine model is 
again always more accurate than the survey  respondent-type no matter which 
 respondent-type or survey is studied. The  MS E  피  /MS E  픽    ratios for the median SPF 
and BC forecasts of GDP growth are 0.88 and 0.87, respectively. For the SOC, there 
is only a single forecast, denoted as if it corresponds to the “median” household, 
since the SOC forecast is constructed from the balance score for business conditions 
expectations, eliminating the heterogeneity (see above). The  MS E  피  /MS E  픽    for this 
single SOC forecast of GDP growth is 0.78.

Table 2 shows that the biggest gains in forecast accuracy afforded by the machine 
algorithm over the human forecasters occurs in more recent data, toward the end of 

11 Table A1 in the online Appendix shows that the machine also improves over the mean of the survey forecasts. 
We do not report those results here because the mean is always an amalgam that does not correspond to the belief 
of any single  respondent-type in the survey and would not be known to any individual. It is arguably less relevant 
to the study of what, if any, systematic errors individuals may make when forming macroeconomic expectations.
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our forecast sample. The table compares the accuracy of the machine forecast to that 
of the median forecast for each survey over the last five years of our external fore-
cast sample, from 2013:II to 2018:II. For GDP growth, the ratio  MS E  피  /MS E  픽    for 
the median SPF forecast is 0.82 over this subperiod, while it is 0.67 for median BC 
forecast. For inflation, the ratio  MS E   피  /MS E   픽    over this same subperiod is 0.63 for 
the median SPF forecast, 0.67 for the median BC forecast, and 0.37 for the median 
SOC forecast. That the machine does better at the end rather than the beginning of 
the sample is of interest, since it suggests that bounded rationality in the form of 

Table 1—Machine Learning versus Survey Forecasts

ML:  y  j,t+h   =  α  jh  
 (i)   +  β  jh픽   

 (i)     픽  t  
 (i)   [ y  j,t+h  ]  +  B  jh   (i)     jt   +  ϵ jt+h  

Inflation forecasts

Percentile: Median 5th 10th 20th 25th 30th 40th

Survey of Professional Forecasters (SPF)
 MSE  피   /   MSE   픽   0.85 0.56 0.74 0.83 0.90 0.88 0.89

 OOS  R    2  0.15 0.44 0.26 0.17 0.10 0.12 0.11

  w   ∗  0.68 0.82 0.78 0.74 0.63 0.66 0.66

 MSE  ℝ   /   MSE    픽   0.82 0.41 0.64 0.77 0.81 0.82 0.84

60th 70th 75th 80th 90th 95th

 MSE  피   /   MSE    픽   0.74 0.70 0.67 0.59 0.55 0.47

 OOS  R    2  0.26 0.30 0.33 0.41 0.45 0.53

  w   ∗  0.78 0.76 0.74 0.80 0.79 0.83

 MSE  ℝ   /   MSE    픽   0.76 0.66 0.61 0.53 0.39 0.27

Percentile: Median 5th 10th 20th 25th 30th 40th

Michigan Survey of Consumers (SOC)
 MSE  피   /   MSE    픽   0.62 0.22 0.27 0.45 0.58 0.69 0.70

 OOS  R    2  0.38 0.78 0.73 0.55 0.42 0.31 0.30

  w   ∗  1.00 0.96 0.93 0.92 0.92 0.95 1.00

 MSE  ℝ   /   MSE    픽   0.62 0.11 0.20 0.42 0.52 0.64 0.76

60th 70th 75th 80th 90th 95th

 MSE  피   /   MSE    픽   0.40 0.22 0.16 0.13 0.05 0.03

 OOS  R    2  0.60 0.78 0.84 0.87 0.95 0.97

  w   ∗   1.00 1.00 1.00 1.00 1.00 1.00

 MSE  ℝ   /   MSE    픽   0.37 0.21 0.16 0.11 0.04 0.02

Percentile: Median 5th 10th 20th 25th 30th 40th

Blue Chip Financial Forecasts (BC)
 MSE  피   /   MSE    픽   0.84 0.58 0.60 0.85 0.85 0.86 0.91

 OOS  R    2  0.16 0.42 0.40 0.15 0.15 0.14 0.09

  w   ∗  0.65 0.73 0.76 0.62 0.63 0.62 0.58

 MSE  ℝ   /   MSE    픽   0.76 0.45  0.55 0.72 0.76 0.78 0.78

60th 70th 75th 80th 90th 95th

 MSE  피   /   MSE    픽   0.78 0.69 0.65 0.59 0.48 0.38

 OOS  R    2  0.22 0.31 0.35 0.41 0.52 0.62

  w   ⁎  0.70 0.79 0.82 0.86 0.94 0.92

 MSE  ℝ   /   MSE    픽   0.73 0.66 0.62 0.57 0.43 0.33

(continued)



2294 THE AMERICAN ECONOMIC REVIEW JULY 2022

limitations on the human capacity for collecting and processing large amounts of 
information are unlikely to fully explain our findings. By 2013, at least professional 
forecasters would have had both the resources and the capacity to take advantage of 
advances in  information-processing technology and computing power.

While a comparison of mean squared forecast errors is one sensible way to eval-
uate predictive accuracy, researchers sometimes consider other aspects of the fore-
cast environment. For example, there is often interest in characterizing uncertainty 
around the predictive accuracy of two models in statistical terms, and frequentist 

Table 1—Machine Learning versus Survey Forecasts (continued)

ML:   y  j,t+h   =  α  jh  
 (i)   +  β  jh픽   

 (i)     픽  t  
 (i)   [ y  j,t+h  ]  +  B  jh   (i)     jt   +  ϵ jt+h   

GDP forecasts

Percentile: Median 5th 10th 20th 25th 30th 40th

Survey of Professional Forecasters (SPF)
 MSE  피   /   MSE    픽    0.88  0.70  0.81  0.80  0.84  0.87  0.88 

 OOS  R    2   0.12  0.30  0.19  0.20  0.16  0.13  0.12 

  w   ∗   0.83  0.96  1.00  1.00  1.00  0.94  0.87 

 MSE  ℝ   /   MSE    픽    0.87  0.74  0.83  0.88  0.89  0.89  0.88 

60th 70th 75th 80th 90th 95th

 MSE  피   /   MSE    픽    0.85  0.81  0.79  0.80  0.69  0.64 

 OOS  R    2   0.15  0.19  0.21  0.20  0.31  0.36 

  w   ∗   0.85  0.88  0.87  0.83  0.85  0.84 

 MSE  ℝ   /   MSE   픽    0.84  0.81  0.79  0.77  0.67  0.58 

Percentile: Median

Michigan Survey of Consumers (SOC)
 MSE  피   /   MSE    픽    0.78 

OOS R  0.22 

  w   ∗   0.81 

Percentile: Median 5th 10th 20th 25th 30th 40th

Blue Chip Financial Forecasts (BC)
 MSE  피   /   MSE    픽    0.88  0.77  0.74  0.89  0.83  0.82  0.78 

 OOS  R    2   0.13  0.23  0.26  0.11  0.17  0.18  0.22 

  w   ∗   0.64  0.68  0.75  0.60  0.73  0.71  0.76 

 MSE  ℝ   /   MSE    픽    0.75  0.70  0.76  0.79  0.79  0.78  0.76 

60th 70th 75th 80th 90th 95th

 MSE  피   /   MSE    픽    0.78  0.79  0.75  0.71  0.67  0.67 

 OOS  R    2   0.22  0.21  0.25  0.29  0.33  0.33 

  w   ∗   0.72  0.71  0.72  0.77  0.77  0.74 

 MSE  ℝ   /   MSE    픽    0.73  0.70  0.69  0.66  0.60  0.55 

Notes: The machine and survey  mean squared forecast errors for  four-quarter-ahead fore-
casts, averaged over the evaluation sample are denoted by   MSE  피    and   MSE  픽   , respectively. 
The  out-of-sample   R   2  ,  OOS  R    2  , is defined as  1 −  MSE  피  / MSE  픽   . The weight on the machine 
forecast for the hybrid forecast described in the text is denoted by   w   ⁎  . The MSE from the 
full information, rational expectations (FIRE) benchmark described in the text is denoted by   
MSE  ℝ     . The vintage of observations on the variable being forecast is the one available four 
quarters after the period being forecast. The evaluation period for the Survey of Professional 
Forecasters (SPF) and the Michigan Survey of Consumers (SOC) is 1995:I to 2018:II; and 
for the Blue Chip (BC) survey is 1997:III to 2018:II (inflation) and 1996:I to 2018:II (GDP).
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econometric tests are sometimes employed in this service. While this is a laudable 
goal for some questions, we argue that such tests are less useful or relevant when the 
objective is to measure belief distortions in survey point forecasts, as here. In this 
case, forecaster bias is revealed by any instance in which forecasters choose point 
forecasts that—on the basis of ex ante information—demonstrably fail to minimize 
the loss function. For example, a professional forecaster might have two models that 
produce economically large differences in mean squared forecast error, while sta-
tistical tests can often indicate that they are the “same.” The question then becomes, 
what should an unbiased point forecaster do? If mean squared loss is the objective, 
there is only one optimal choice, and this is unaffected by the amount of sampling 
noise around her two model forecasts.

Of course, measures of uncertainty about forecast point forecasts are inherently 
interesting for reasons other than forecaster bias, such as when we want to charac-
terize our overall confidence in any prediction or predictions. But even for this pur-
pose, tests is that they return merely a binary answer on whether a null hypothesis is 
rejected or not—while being silent on the practical quantitative question of by how 
much one model is more accurate than another—would seem to be of limited utility.

For these reasons we take an alternative approach to characterizing uncertainty, 
one that allows us to quantify any gains in forecast accuracy on a continuum from 
low to high, without being affected by the overall amount of statistical noise in 
the environment that both the machine and the survey forecast are subject to. The 
approach is motivated by the work of Amisano and Geweke (2017), who consider 
the properties of weighted linear combinations of prediction models. The key idea is 
that even if one model has superior predictive power over others, an optimal linear 
combination typically includes several models with positive weights, since being 
better on average is not synonymous with being always better. Amisano and Geweke 
(2017) focus on density forecasts, but given that survey responses are point fore-
casts rather than density forecasts, we adapt their idea by solving for the optimal 
linear combination of the machine and survey forecasts that minimizes the mean 
square forecast error over our evaluation sample. We refer to this linear combination 
as the optimal “hybrid” forecast.

Table 2—Machine Learning versus Survey Forecasts

ML:   y  j,t+h   =  α  jh  
 (i)   +  β  jh픽   

 (i)     픽  t  
 (i)   [ y  j,t+h  ]  +  B  jh   (i)     jt   +  ϵ jt+h   

Median inflation forecasts,   MSE   피  / MSE   픽   

SPF SOC BC
1995:I–2018:II 2013:II–2018:II 1995:I–2018:II 2013:II–2018:II 1997:III–2018:II 2013:II–2018:II

0.85 0.63 0.62 0.37 0.84 0.67

Median GDP forecasts,   MSE  피  / MSE  픽   
SPF SOC BC

1995:I–2018:II 2013:II–2018:II 1995:I–2018:II 2013:II–2018:II 1996:I–2018:II 2013:II–2018:II
0.88 0.82 0.78 0.71 0.87 0.67

Notes: Machine versus survey  mean squared forecast errors. The machine and survey  mean squared forecast errors, 
for  four-quarter-ahead forecasts, averaged over the evaluation sample are denoted by   MSE  피    and   MSE  픽   , respec-
tively. The vintage of observations on the variable being forecast is the one available four quarters after the period 
being forecast.
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Specifically, consider a hybrid forecast of   y  j,t+h   , denoted  피 픽  t  
 (i)   [ y  j,t+h  ] ,  obtained as 

a weighted average of the machine and the survey forecasts:

  피 픽  t  
 (i)   [ y  j,t+h  ]  ≡ w 피  t  

 (i)   [ y  j,t+h  ]  +  (1 − w)  픽  t  
 (i)   [ y  j,t+h  ]  ,

where  w ∈  [0, 1]  . Conceptually we can ask, given the average performance of these 
two forecasts over our sample, how much weight  w  would one want to place on one 
versus the other in a hybrid forecast if we faced an identical sample in the future? To 
answer this question, note that the hybrid forecast errors are a linear combination of 
the machine and survey forecast errors:

   hybrid error  t+h  
 (i)    = 피 픽  t  

 (i)   [ y  j,t+h  ]  −  y  j,t+h   

 = w 피  t  
 (i)   [ y  j,t+h  ]  +  (1 − w)  픽  t  

 (i)   [ y  j,t+h  ]  −  y  j,t+h   

           = w ( machine error  t+h  
 (i)   )  +  (1 − w)  ( survey error  t+h  

 (i)   )  ,

with the hybrid mean squared forecast error given by

  hybrid MSE ≡ MS E   피픽   =  (1/P)     i=1  P    ( hybrid error  t+h  
 (i) 

  )    
2

 . 

The optimal weight   w   ∗   placed on the machine forecast is defined as the one that 
minimizes the hybrid MSE over our evaluation samples, i.e.,

   w   ∗  = arg min MS E   피픽   = arg min (1/P)     i=1  P    ( hybrid error  t+h  
 (i) 

  )    
2

 , 

where  P  is the length of the evaluation sample.
The weights   w   ∗   are reported in the third row of each subpanel in Table 1. To 

interpret these numbers, note that if the machine were always better than the survey,   
w   ∗   would be 1. This happens with many percentiles of the SOC inflation forecasts, 
and in several percentiles of the SPF GDP growth forecasts. If instead the machine 
is only marginally better than the survey,   w   ∗   would be close to 0.5. For the median 
GDP growth forecasts, the weights are well above 0.5, equal to 0.83, 0.81 and 0.64 
for the SPF, SOC and BC median forecasts, respectively. The analogous weights 
for the median inflation forecasts are 0.68, 1, and 0.65, and typically higher for 
the other percentile types. These relatively large numbers close to unity imply that 
the machine produced economically meaningful gains in forecast accuracy over the 
survey responses during the historical sample over which the two forecasts were 
separately evaluated.

Finally, in the last rows of Table 1 we report the results of a different type of 
model comparison. Specifically, we compare the accuracy of survey forecasts with 
that from an alternative machine specification that differs from our baseline machine 
specification along only one dimension: it uses every  percentile-type’s time  t  fore-
cast rather than just the  i th percentile’s. This alternative benchmark is motivated by 
certain imperfect information models in which every agent in the economy receives 
a private signal, but other agents’ private signals are not publicly known. In such 
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models, the full information, rational expectations (FIRE) benchmark against which 
any distortion is measured is based on the union of everyone’s information at time  
t. 12 The last rows of each panel in Table  1 report the ratio of the mean squared 
forecast errors under this FIRE benchmark, denoted  MS E  ℝ   , to the survey  MS E  픽   . 
Comparing the ratio  MS E  ℝ  /MS E  픽    with those in the first row showing the baseline  
MS E  피  /MS E  픽   , we see that the numbers are quite similar, and in some cases the latter 
ratio is a bit smaller than the former. This shows that the improvement in forecast 
accuracy afforded by allowing the machine benchmark to observe everyone’s time  
t  prediction—where it exists at all—is minimal. This finding is relevant because 
it suggests that information frictions based on noisy “dispersed information” are 
unlikely to be the most relevant source of belief distortion in our data.

Returning to the baseline specifications, it is of interest to consider the nature of 
the empirical specifications chosen by the machine that produce gains in forecast 
accuracy. Figure 3 reports a scatterplot that quantifies the strength of the estimated 
ridge and LASSO penalties, with each point representing a combination of the two 
penalties chosen for one time period of the evaluation sample. The  y-axis displays 
the degree of sparsity implied by the   L   1   (LASSO) penalty, as measured by the frac-
tion of  nonzero coefficients. The  x-axis displays the degree of shrinkage implied 
by the   L   2   (ridge) penalty, as measured by  1/ (1 +   ̂  λ  2, t  )  , where    ̂  λ  2,t    is the estimated 
ridge penalty parameter for period  t . The right border of the plot is the case where 
there is no ridge penalty at all, while the top edge of the plot is the case where there 
is no LASSO penalty. We see that the machine algorithm often results in a sparse 
specification. In many time periods the fraction of  non-zero coefficients hovers 
around 10 percent or less, though in some periods the machine chooses little if any 

12 We thank an anonymous referee for suggesting this alternative comparison.

Figure 3. Degree of Sparsity and Shrinkage

Notes: The figure displays a scatterplot of the strength of the ridge and least absolute shrinkage and selection oper-
ator (LASSO) penalties estimated from training samples over time for predicting median inflation or real GDP 
growth. For each observation in the evaluation sample from 1995:I–2018:II (94 observations), the y-axis displays 
the degree of sparsity implied by the estimated   L  1    penalty,   λ 1   , in units of the fraction of nonzero regression coeffi-
cients, and the x-axis displays the degree of shrinkage implied by the estimated   L  2    penalty,   λ 2    in units of  1/(1 +  λ 2  ) .

S
pa

rs
ity

: f
ra

ct
io

n 
of

 n
on

ze
ro

 c
oe

ffi
ci

en
ts

Shrinkage:
1/(1 + λ2)

SPF in�ation

Shrinkage:
1/(1 + λ2)

SPF GDP

Shrinkage:
1/(1 + λ2)

SOC in�ation

Shrinkage:
1/(1 + λ2)

SOC GDP

Shrinkage:
1/(1 + λ2)

BC in�ation

Shrinkage:
1/(1 + λ2)

BC GDP

0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1



2298 THE AMERICAN ECONOMIC REVIEW JULY 2022

sparsity, but much greater   L   2   shrinkage. Occasionally, the machine chooses mini-
mal sparsity and minimal   L   2   shrinkage. This implies that achieving the efficiency 
gains of the machine over the extended evaluation sample requires entertaining large 
datasets in every period, even though much of that information is associated with a 
coefficient that is shrunk all the way to zero most of the time.

B. Dynamics of Belief Distortions

We now turn to investigate the dynamics of systematic expectational errors, by 

reporting the median bias over time, i.e.,  bia s  j,t  
 (50)   ≡  픽  t  

 (50)   [ y  j,t+h  ]  −  피  t  
 (50)   [ y  j,t+h  ]   over 

our evaluation sample. Note that the units of  bia s  j,t  
 (50)    are the same as the forecasts 

themselves and are in annual percentage points. Figure 4 shows biases associated 
with the mean and median respondents for all three surveys.

Figure 4 shows that systematic errors in the median forecasts vary substantially 
over time and can range between 50 percent and 400 percent of the average annual 
inflation or GDP growth, depending on the survey. Survey forecasts for GDP growth 
oscillate between “optimism” and “pessimism,” a finding reminiscent of learning 
models that feature extended waves of optimism and pessimism (e.g., Eusepi and 
Preston 2011). For GDP growth the figure shows extended periods of  overoptimism 
that are especially prevalent for professional forecasters in the  post-Great Recession 
part of our subsample. From 2010:I to 2018:II, the median SPF forecast of GDP 
growth is biased upward by 0.88 percent at an annual rate, or 39 percent of actual 
GDP growth during this period. This large upward bias since 2010 contributes heft-
ily to the upward bias over the full evaluation sample (1995: I–2018:II), which is 
also sizable and amounts to 19 percent of observed GDP growth. These distortions 
are quite similar for the median BC expectation of GDP growth. For the SOC, the 
average bias is close to zero even though the SOC forecast is less accurate than 
the SPF or BC forecasts. This happens because the SOC forecast makes system-
atic errors of greater magnitude that fluctuate more wildly between optimism and 
pessimism. For all surveys, there are large spikes in the biases at the cusp of the 
 2000–2001 recession, a finding we discuss further below.

For inflation, Figure 4 shows that the median expectations are biased upward (a 
direction we defined above as “pessimistic”) over most of the sample for the SPF 
and the SOC, while the BC survey exhibits an average bias that is close to zero.13 
Despite being upwardly biased on average over the full sample, median inflation 
forecasts exhibit a downward bias from 2011 to 2014 that ranges across surveys 
from −0.08 percent to −0.82 percent at an annual rate, or −4.3 percent to −47 
percent of actual inflation during this period. Given that inflation has been declining 
over time, this could be interpreted as evidence of a learning process.

13 Whether an upward bias in inflation expectations should be viewed as pessimism or optimism may depend on 
the time period. Bhandari, Borovicka, and Ho (2019) argue that a general interpretation of higher expected inflation 
as optimism is at odds with surveys of inflation attitudes, but others have argued that a downward bias in inflation 
expectations could be interpreted as pessimism during specific episodes, such as when nominal interest rates are at 
the  zero lower bound (Masolo and Monti 2021). We use “pessimistic” as a  shorthand labeling device for upwardly 
biased inflation expectations, regarding the interpretation as roughly right for households in most  time periods.
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Figure 4 also shows clearly the reason for the big relative gains in forecast accu-
racy afforded by the machine algorithm during the last five years of our forecast 
sample, from 2013: II to 2018:II, as documented in Table 2. Professional forecasters 
and households alike  underperformed over this subperiod because they repeatedly 
 overpredicted both economic growth and inflation.

Finally, Figure 4 plots the estimated biases in the median survey forecasts as mea-
sured against the machine FIRE benchmark discussed above, which uses the union 
of everyone’s information at time  t , in addition to the extensive public information 
(red dashed line). With the exception of a few outlier observations, deviations of the 

median forecast from this FIRE benchmark track closely  bia s  j,t  
 (50)   , reinforcing the 

conclusion that noisy, dispersed information is unlikely to be an important driver of 
our measured belief distortions.

Figure 5 contrasts the common and heterogeneous components of these belief 
distortions over time, breaking them out by survey. The common component is 
measured as the first principle component (PC) of  bia s  j,t  

 (i)    across all percentiles  i , 

with heterogeneity exhibited by the distribution of  bia s  j,t  
 (i)    across  i .14 For all surveys, 

we observe substantial variation in belief distortions over time that is common 
across SPF respondents. For SPF and BC, the optimism about economic growth in 
the immediate aftermath of the Great Recession is present in the common compo-
nent, as is a downward bias to inflation expectations for this same time period. At the 
same time, there is substantial heterogeneity across responses that varies over time, 
with greater dispersion observed in recessions. For the SPF, the most optimistic 

14 Since the PCs and their factor loadings  Λ  are not separately identifiable, the loadings are normalized by  
  (Λ′Λ) /N =  I q    where  N  is the number of  bia s    (i)    series over which common factors are formed and  q  is the number 
of common factors. This implies that the units for these series have no  straight-forward interpretation in terms of 
the raw data.

Figure 4. Biases in the Median Survey Forecast

Notes: The figure reports the time series   bias  j,t+h  
(i)

   =  픽  t  
(i) [ y  j,t+h  ] −  피  t  

(i) [ y  j,t+h  ]  for  i = 50 ; mean. NBER recessions 
are shown with gray shaded bars. The sample spans the period 1995:I–2018:II.
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and pessimistic responses differ in some recession periods by more than 4 percent 
for GDP growth and by more than 2 percent for inflation, similarly for the BC sur-
vey. The high degree of disagreement among professional forecasters resulting in 
substantial heterogeneity in biases is an example of what Kahneman, Sibony, and 
Sunstein (2021) call “noise.” For households in the SOC, the heterogeneity in mea-
sured belief distortions about inflation is enormous, especially immediately after the 
Great Recession, where the forecast of annual inflation from the  respondent-type at 
the ninetieth percentile is almost 15 percent, while that for the  respondent-type at 
the fifth percentile is less than  − 5  percent.

Figure 6 compares forecasted and actual values over time. The figure displays 
the median forecast of  four-quarter-ahead inflation or GDP growth over our evalu-
ation sample along with the actual inflation or GDP growth rate during the corre-
sponding four quarter period being forecast. For all surveys, the machine has been 
more accurate not just on average over the long evaluation samples, but also con-
sistently over the last five years of these samples, from 2013:II to 2018:II, and by 
even larger magnitudes. For GDP growth, the ratio  MS E  피  /MS E  픽    for the median 
SPF forecast is 0.82 over this subperiod, while it is 0.67 for median BC forecast. 
For inflation, the ratio  MS E  피  /MS E  픽    over this same subperiod is 0.63 for the median 

Figure 5. Common and Heterogeneous Distortions

Notes: The first row reports the first principal component of the biases across different surveys. For each respondent 
type, the second row reports the time series   bias  j,t+h  

(i)   =  픽  t  
(i) [ y  j,t+h  ] −  피  t  

(i) [ y  j,t+h  ] . The figure does not report the SOC 
GDP bias because only one series is available in that case. NBER recessions are shown with gray shaded bars. The 
sample is 1995:I–2018:II.
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SPF forecast, 0.67 for the median BC forecast, and 0.37 for the median SOC fore-
cast. In both cases, professional forecasters and households alike  underperformed 
in this subperiod because they systematically  overpredicted both economic growth 
and inflation. That the machine does better at the end rather than the beginning of 
the evaluation sample is noteworthy, since it suggests that bounded rationality in 
the form of limitations on the human capacity for collecting and processing large 
amounts of information are unlikely to fully explain these findings. At least profes-
sional forecasters would have been capable by 2013 of taking advantage of advances 
in  information-processing technology.

Unsurprisingly, the machine does not perform well in every time period of our 
sample. Figure 6 shows that professional forecasters made large forecast errors that 
were overly optimistic about GDP growth at the onset of the Great Recession, as 

Figure 6. Forecasted versus Actual Inflation, GDP Growth

Notes: For each variable and survey, the figure reports the median survey forecast of inflation or GDP growth over 
the next four quarters, the corresponding machine forecast, and the realized inflation or GDP growth values during 
this period. Realized values are measured in real-time data as the vintage available four quarters after the period 
being forecast. NBER recessions are shown with gray shaded bars. The sample is 1995:I–2018:II.
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noted in Gennaioli and Shleifer (2018). This pattern is likewise evident in Figure 6 
for all surveys studied here. The figure shows that large forecast errors were made 
during this episode by the machine as well, with the machine algorithm doing 
somewhat better than the SOC forecast, only slightly better than the BC forecast, 
and about the same but if anything slightly worse than the SPF forecast. This 
occurs despite the fact that the machine algorithm takes into account hundreds 
of pieces of  real-time information including that encoded in numerous financial 
series and dozens of credit spreads, recorded at daily, monthly, and quarterly sam-
pling intervals. Such large ex post forecast errors during the Great Recession are 
arguably understandable when placed in the broader context of the time. As noted 
above, in contrast to many past recessions, yield spreads generally failed to signal 
the Great Recession to come. Moreover, the period leading up to the recession 
was  characterized by unusually  elevated objective uncertainty about the macro-
economy (Jurado, Ludvigson, and Ng 2015 and Ludvigson, Ma, and Ng 2019). 
We argue that this episode underscores the role of largely unforeseen events in 
generating occasionally large prediction errors, not all of which can be attributed 
to a systematic bias in expectations.

Of course, with hindsight we now know that the Great Recession was preceded 
by a global financial crisis, itself triggered by a collapse in the value of residential 
real estate. It is thus tempting to consider feeding the machine a different switching 
indicator just prior to the Great Recession, for example, one based on credit spreads 
or indicators of balance sheet health for firms and households. Our view is that this 
approach would be hard to defend, however. Unlike the case for yield spreads, where 
by the  mid-1990s there existed a large body of public evidence showing their unique 
predictive power for recessions, there is no analogous body of empirical evidence 
for credit spreads and/or balance sheet indicators before 2007. Indeed, several of 
the empirical studies cited above and published in the early to mid 1990s explicitly 
compared credit spreads to yield spreads for forecasting output growth. Such studies 
universally found that credit spreads were comparatively weak predictors of reces-
sions. Moreover, many of the balance sheet indicators now understood to be predic-
tive for the global financial crisis (e.g., Greenwood et al. 2020) would not have been 
available in real time prior to the crisis, given the substantial data collection and data 
processing lags for such indicators. In short, the focus today on credit spread and 
balance sheet indicators as key predictors of recessions appears largely motivated by 
our ex post understanding of the  2007–2008 global financial crisis, rather than by a 
large body of prior knowledge that these indicators were the most robust predictors 
of economic contractions before the crisis. Since our approach is explicitly designed 
to exclude from the measure of belief distortions ex post mistakes that could only 
be understood with hindsight, we take the conservative approach of restricting our 
recession indicators to those that can be clearly defended on the basis of a prior body 
of publicly available empirical evidence.

C. Bias Decomposition

If the machine algorithm generates better forecasts, the survey respondents must be 
 misweighting pertinent economic information. This raises the question: What kind of 
errors in judgment are the  respondent-types making? To address this question, recall 
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that the time  t  bias is defined as the difference between the survey  respondent-type 
and machine forecasts:

(9)  bia s  j,t+h  
 (i)    ≡  픽  j,t+h|t  

 (i)    −  피  j,t+h|t  
 (i)    =  픽  t  

 (i)   [ y  j,t+h  ]  −   α ˆ   jh   −   β ˆ    jh픽  
 (i) 

    픽  t  
 (i)   [ y  j,t+h  ]  −   �̂�     jh   

 (i) ′     jt  

 =    [−   α ˆ    jh  
 (i) 

 ]  
⏟

   
Intercept

    +    [ (1 −   β ˆ    j픽  
 (i) 

 )  픽  t  
 (i)   [ y  j,t+h  ] ]   


    

Survey

    +    [−   B ˆ    j  
 (i) ′   jt  ]  

   
Info variables

    .

We are interested in the contribution of the three terms on the  right-hand side 
of (9), shown in large square brackets, the sum of which equals 100 percent 
of  bia s  j,t+h  

 (i) 
   . This decomposition gives an indication of which information is most 

 misweighted by the survey  respondent-type, and by how much. The intercept term 
   α ˆ    jh  

 (i) 
   changes over the evaluation sample through the dynamic estimation algorithm 

and is akin to a  time-varying latent conditional mean applied to the most recent roll-
ing subsample window. We refer to this parameter as a “rolling mean” and denote it 

with a  t  subscript, i.e.,    α ˆ    jh,t  
 (i) 

   . The estimates    β ˆ    j픽  
 (i) 

   and    B ˆ    j  
 (i) ′   also vary over the evaluation 

sample and are likewise denoted with a  t  subscript.
It is useful to consider the magnitude and signs of the coefficients in the com-

ponents above. First consider the coefficient on the survey forecast. If    β ˆ    j픽,t  
 (i) 

   < 1 ,  
this implies that the machine improves forecasts by downweighting the survey 
response in favor of giving greater absolute weight to publicly available informa-

tion. Thus an estimate of    β ˆ    j픽,t  
 (i) 

   < 1  implies that the  respondent-type  overweighted 
the marginal information in her own forecast relative to an efficient weighting of 

publicly available information. Conversely, if    β ˆ    j픽,t  
 (i) 

   > 1 , the machine improved 
forecasts by giving greater weight to the survey forecast than the implicit weight 
given by the  respondent-type to her own forecast. For the information variables and 

the rolling mean, any estimate of    B ˆ    j,t  
 (i) ′  ≠ 0  or    α ˆ    jh,t  

 (i) 
   ≠ 0  indicates that the machine 

improved forecasts by giving greater absolute weight to    j,k,t    or    α ˆ    jh,t  
 (i) 

    compared to the 

 respondent-type’s implicit weight of zero conditional on her own forecast. Thus we 

refer to any estimate with    B ˆ    j,t  
 (i) ′  ≠ 0  or    α ˆ    jh,t  

 (i) 
   ≠ 0  as  underweighting of these sources 

of information.
Figure 7 reports, for each survey and each variable, the contribution to the bias in 

the median forecast of the three terms in square brackets in (9) at each point in time 
over our forecast evaluation samples. The solid lines in each subfigure of Figure 
7 report the total median bias,  bia s  j,t+h  

 (50) 
   , while the contributions of the three terms 

in square brackets in (9) are reported as bar charts, with the height of the bar show-
ing the absolute magnitude by which that component contributed to the bias. Any 
above (below) zero bar indicates that the term contributed positively (negatively) 
to the overall bias. Since there are many terms in the information variable term, the 
figure reports contributions only for the most quantitatively important information 
variable contributors to the bias at each time  t . In the case of the survey contribution, 
we further indicate with color coded bars whether a contribution to the bias was 
created by the  respondent-type having over- or  underweighted her own forecast. A 

stevens
Highlight
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red bar indicates that the median  respondent-type  overweighted her own forecast 

(i.e.,    β ˆ    j픽,t  
 (i) 

   < 1) , while a blue bar indicates that she  underweighted. For the intercept 
and information variables terms, any bar with a  nonzero height indicates that the 
 respondent-type gave too little absolute weight to that information. Recessions are 
shown in the figure by light gray shaded areas.

A key finding exhibited in Figure 7 that is robust across all surveys and all 

variables is that    β ˆ    j픽,t  
 (50) 

   is very often substantially less than one. This happens not 
only for all surveys and for both inflation and GDP growth expectations, but also 
for most time periods in the evaluation sample. The mean (across time) values 

of    β ˆ    j픽,t  
 (50) 

   for inflation and GDP growth are 0.40 and 0.45, respectively, for SPF, 0.33 

Figure 7. Bias Decomposition: Median Forecast

Notes: The figure plots contributors to the median bias   픽  t  
(50) [ y  j,t+h  ] −  피  t  

(50) [ y  j,t+h  ] = 

−  α ̂    jh  
(50)

  +  (1 −   β ˆ    j픽  
(50)

 )  픽  t  
(50) [ y  j,t+h  ] −  β  j  

(50)′
   jt    at each time t. The solid black lines in each subpanel plot the median 

bias,   F  t  
(50) [ y  j,t+h  ] −  E  t  

(50) [ y  j,t+h  ] . The bar charts in the first row panel report   (1 −   β ˆ    j픽  
(50)

 )  픽  t  
(50) [ y  j,t+h  ] ; those in the sec-

ond row report  −  α ̂    jh  
(50)

  ; those in the third row report  − β  j  
(50)′

   jt    for the most important predictor contributors to the 
time t bias. Red bars indicate that the survey forecast was given too much weight relative to the machine efficient 

forecast, corresponding to   (1 −   β ˆ    j픽  
(50)

 )  > 0 . Blue bars indicate that the survey forecast was given too little weight 

relative to the machine efficient forecast, corresponding to   (1 −   β ̂    j픽  
(50)

 )  < 0 . NBER recessions are shown with 

gray shaded bars.
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and 0.54 for BC, and 0.14 and 0.41 for SOC. Thinking back to the model of pub-

lic and private signals, we can interpret a finding of    β ˆ    j픽,t  
 (i) 

   > 0  as indicating that 
the marginal information contained in the survey response, capturing information 
intangible to the machine, such as that provided by a private signal or judgment, 
is in fact often valuable. But the finding that    β ˆ    j픽,t  

 (i) 
   < 1  indicates that such infor-

mation is less valuable than the implicit weight placed on it by the survey respon-
dent. The model of private and public signals implies that estimates    β ˆ    j픽,t  

 (i) 
   < 1  occur 

when the  respondent-type  overrelies on her private information or judgment, either 
because she  overestimates the precision of her private signal or because she ineffi-
ciently combines the public information, thereby  underestimating the precision of 
the  public signal. Many instances of such an apparent overreliance are exhibited in 
Figure 7 by the frequent, tall red bars in the survey forecast panels of the first row. 
The length of the bars indicates that this factor contributes in most cases to quantita-
tively large distortions in macro expectations. For example, the first panel in Figure 
7 indicates that this factor contributed 4 percent to the upward bias in the median 
SPF forecast of inflation—accounting for more than 100 percent of the bias—during 
several periods at the end of the Great Recession.

If the median forecaster typically placed too much weight on her own forecast, 
then by definition she placed too little absolute weight on other information. The 
bottom two rows of Figure 7 gives an indication of the type of other objective eco-
nomic information that was  misweighted by the median forecaster over time. A 
key finding here is that the type of information is not static but instead changes 
over time. For example, in forming inflation expectations, the third rows shows that, 
during the Great Recession, too little attention was paid by the median SPF respon-
dent to daily data on corporate credit spreads and to monthly data on  long-run sur-
vey inflation forecasts, while for the years immediately after the Great Recession, 
between 2010 and 2015, the median respondent paid too little attention to daily 
information on Treasury yields and lagged values of the SPF forecasts. The type 
of information that was  underweighted varies also across surveys. For the SOC, 
 underweighting of  long-run CPI survey forecasts shows up right before the Great 
Recession, but not elsewhere in the sample, while we find that the BC median fore-
cast  underweighted this information after the Great Recession while subsequently 
giving too little weight to lagged survey forecasts.

Turning to expectations of economic growth, Figure 7 shows that the  overoptimism 
displayed by professional forecasters (both SPF and BC) in the  post-Great Recession 
period was largely driven, at first, by paying too little attention to the predictable 
slowing of average economic growth captured by the rolling mean, and then sub-
sequently by repeated instances of  overweighting the marginal information in the 
survey response relative to what would be optimal under an efficient weighting of 
public information. Evidently, the median professional forecaster placed too much 
weight on a mistaken belief that economic growth would accelerate more than it did, 
a factor that accounts for more than 100 percent of the bias in the last five years of 
the sample. Overall the results are suggestive of a substantial overreliance by pro-
fessional forecasters on the private or judgmental component of their predictions.

Taken together, the findings in Figure 7 underscore the crucial role of consid-
ering extensive and varied information in reducing forecaster bias. Although our 
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machine learning algorithm often chooses sparse specifications, the findings in this 
figure show that different sparse information sets are relevant at different points in 
time.15 Since it is virtually impossible for a human to know with certainty which 
information may be relevant ex ante, algorithmic “openness” to  wide-ranging and 
rich sources of information are vital for improving forecast accuracy over extended 
periods of time.

D. Some Comparisons with the Literature

With these results in hand, we now revisit some results in the prior literature that 
help illuminate the role played by key elements of our machine learning approach 
for establishing whether and by how much beliefs embedded in human judgments 
are distorted.

One key element pertains to the basic principle of  out-of-sample versus  in-sample 
forecasting, a principle illustrated by contrasting results from ex ante and ex post 
econometric analyses, bearing in mind that survey respondents are asked to make gen-
uine  out-of-sample forecasts based on information known in real time. To illustrate the 
potential importance of this for the measurement of belief distortions, we revisit the 
 in-sample regressions run in Coibion and Gorodnichenko (2015)—henceforth, CG. 
CG found that mean survey forecast errors are positively predicted by ex ante mean 
forecast revisions in  in-sample regressions. We reproduce their findings for the SPF 
on updated data and report the results in panel A of Table 3. Consistent with CG, we 
find strong evidence that lagged forecast revisions predict next period’s forecast error 
in these regressions. Moreover, other information, e.g., lagged inflation, is found to 
be unimportant in predicting forecast errors once the information in forecast revisions 
is taken into account.16 CG observe that these findings are consistent with the impli-
cations of theories that feature information frictions and  underreaction to aggregate 
news.17

The bottom panel of Table 3 reports results from the same regression forecasts, 
but this time run  out of sample rather than  in sample. (Details on the standard 
 out-of-sample estimation procedure can be found in the online Appendix.) Table 3 
shows that over a range of forecast evaluation subsamples and using either rolling 
or recursive regressions, the mean SPF survey forecast generates much lower pre-
diction error than a specification that attempts to exploit information in the lagged 
revision of the mean forecast. In contrast to the  in-sample findings, the inclusion of 
information on lagged forecast revisions substantially worsens predictions of mean 
survey forecast errors when these predictions are made on an  out-of-sample basis. 
This result recalls a body of prior econometric evidence finding that survey forecast 

15 One possible sparse specification is the random walk model for inflation found previously in d’Agostino, 
Giannone, and Surico (2006) to perform better than professional survey forecasts over the 1985: I–1994:IV subpe-
riod. The specifications entertained by the machine nest the random walk model, but the dynamic algorithm chooses 
that specification infrequently over our forecast sample.

16 We include one lag of the quarterly inflation rate as an additional control variable, consistent with the proce-
dure implemented in CG. There is a typo in the published version of CG that erroneously indicates their procedure 
controlled for one lag of annual rather than quarterly inflation.

17 As an aside, we note that the machine forecast errors do not exhibit a correlation with lagged machine forecast 
revisions, even in  in-sample regressions. These results are reported in the online Appendix.
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of inflation are hard to beat or even match with statistical models when forecasts are 
conducted  out-of-sample.18

How can we reconcile the contradictory  in-sample and  out-of-sample evidence? 
One possibility is that the empirical relationship between forecast errors and lagged 
forecast revisions is unstable, as suggested by results below. Such an instability can 
create a high degree of sampling error so that what is revealed to be important ex 
post is simply not apparent ex ante. Whatever the reason for the poor performance of 
the specification  out-of-sample, we’ve argued here that it is impossible to establish 
the extent to which beliefs are distorted due to information frictions or any other 
cause, unless the statistical model used to measure distortions adheres to the same 
forecasting context that survey respondents faced at the time they made their pre-
dictions. After all, even agents such as our machine who possess vast information 
processing capacity will optimally downweight information that might appear rele-
vant ex post if it systematically failed to improve forecasts ex ante. It would not be 
correct to interpret this type of downweighting as  underreaction to economic news 
or as evidence of a systematic bias in expectations.

18 For example, Ang, Bekaert, and Wei (2007); Del Negro and Eusepi (2011); Aiolfi, Capistrán, and Timmermann 
(2011); Genre et al. (2013); and Faust and Wright (2013).

Table 3—CG Regressions of Forecast Errors on Forecast Revisions

Panel A.  In-sample regressions (CG sample)
Regression:   π t+3   −  픽  t  

 (μ)   [ π t+3  ]  =  α    (μ)   +  β    (μ)   ( 픽  t  
 (μ)   [ π t+3  ]  −  픽  t−1  

 (μ)    [ π t+3  ] )  + δ  π t−1,t−2   +  ϵ t   

Constant  0.001  − 0.077 
  t-stat   (0.005)    (− 0.442)  
  픽 t   [ π t+3,t  ]  −  픽 t−1   [ π t+3,t  ]   1.194  1.141 
  t-stat   (2.496)    (2.560)  
  π t−1,t−2    0.021 
  t-stat   (0.435)  
   R 
–
     2   0.195  0.197 

Panel B.  Out-of-sample regressions

Regression:   π t+3   −  픽  t  
 (μ)   [ π t+3  ]  =  α    (μ)   +  β    (μ)   ( 픽  t  

 (μ)   [ π t+3  ]  −  픽  t−1  
 (μ) 

   [ π t+3  ] )  +  ϵ t+3   
Method Forecast sample  MSE   CG  /MSE   픽   
Rolling 5 years 1975:IV–2018:II  1.38 
Rolling 10 years 1980:IV–2018:II  1.29 
Rolling 20 years 1990:IV–2018:II  1.31 
Recursive 5 years 1975:IV–2018:II  1.69 
Recursive 10 years 1980:IV–2018:II  1.60 
Recursive 20 years 1990:IV–2018:II  1.33 

Notes: Panel A reports the  in-sample results over the sample used in Coibion and Gorodnichenko 
(2015) (CG), 1969:I to 2014:IV.  Newey-West corrected  t-statistics with  lags = 4  are reported 
in parentheses. Panel B reports the ratio of  out-of sample  MSE of the CG model forecast 
to that for the survey forecast computed using different rolling or recursive estimation win-
dows. The MSE for the CG model averages the (square of the) forecast errors   π t+3   −   ̂  π    t+3  

 (μ) 
  ,   

where    ̂  π    t+3  
 (μ) 

   =   ̂  α   t  
 (μ) 

  +  (1 +   ̂  β    t  
 (μ) 

 )   픽  t  
 (μ) 

  [ π t+3  ]  −   ̂  β    t  
 (μ) 

   픽  t−1  
 (μ) 

   [ π t+3  ] .  In both panels, the regres-
sion estimation uses the latest vintage of inflation in real time and, following CG, computes 
forecast errors with  real-time data available four quarters after the period being forecast. 
Annual inflation is defined as   π t+3,t   =   

 P  t   _  P  t−1  
   ×   

 P  t+1   _  P  t  
   ×   

 P  t+2   _  P  t+1  
   ×   

 P  t+3   _  P  t+2  
   , and   픽 t   [ π t+3,t  ]   is the mean  

forecast of annual inflation as of time  t  from the SPF. The sample of panel B spans the period 
1969:I–2018:II.
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While this shows that lagged forecast revisions are not reliable  out-of-sample 
predictors of mean forecast errors in the simple regression specification CG consid-
ered, it is reasonable to ask whether they contain any valuable predictive informa-
tion in our machine specifications. We run the following machine version of the CG 
regressions, which use the mean SPF forecast   픽  t  

 (μ)    and again places observations on 
forecast errors on the  left-hand side:

(10)   π j,t+3   −  픽  t  
 (μ)   [ π j,t+3  ]  =  α  π   (μ)   +  β  πFR  

 (μ)    ( 픽  t  
 (μ)   [ π t+3  ]  −  픽  t−1  

 (μ)    [ π t+3  ] ) 

 +  B  π   (μ) ′   πt   +  ϵ πt+h   .

This machine estimation differs from the CG estimation in three ways. First, the 
machine forecasts are made  out of sample rather than  in sample. Second, the 
machine entertains the  large-scale information set    πt    as additional predictor vari-
ables. Third, the machine uses the EN estimator and dynamic  cross-validation algo-
rithm described above, while CG use least squares. We denote the estimate of the 
coefficient on forecast revisions from this machine specification with   β  πFR   (μ)     and that 
from the univariate,  in-sample least squares regression of CG as   β  π CG   (μ)    .

Figure 8 reports the coefficients   β  jFR  
 (μ)     obtained from estimating (10) using the 

machine algorithm. Since the machine estimation is repeated on rolling samples 
using  real-time information up to time  t,  the figure reports the entire  time series of 

estimates    ̂  β    jFR,t  
 (μ)     using a bar chart, where the height of the bar indicates the magnitude 

of    ̂  β    jFR,t  
 (μ)     and the time period  t  refers to the period of the external evaluation sam-

ple 1995: I–2018:II, which is given on the  x-axis. Time periods  t  for which there is 

no bar displayed indicate    ̂  β    jFR,t  
 (μ)    = 0.  For comparison, the fixed  in-sample estimates  

   ̂  β    π CG  
 (μ)     from the CG least squares regressions are shown as separate horizontal lines, one 

for each of three estimation samples: 1969: I–2014:IV (CG sample), 1969: I–2018:II 
(our full sample) and 1995: I–2018:II (our machine external evaluation sample).

Figure 8 shows that the horizontal lines indicating    ̂  β    π CG  
 (μ)     over the first two samples 

are both close to 1.2, while that for the shorter recent sample are smaller by half. By 
contrast, the machine estimates    ̂  β    jFR,t  

 (μ) 
    are always much smaller than the  in-sample 

least squares estimates    ̂  β    π CG  
 (μ) 

    when those are obtained using the two longer subsa-
mples, and they only match or exceed the  half-as-large value in the shorter recent 
sample in one time period. Instead, the machine estimates of    ̂  β    jFR,t  

 (μ) 
    are shrunk all the 

way to zero in 88 out of 94 quarters in favor of placing greater absolute weight on 
other pieces of information contained in    πt    or    ̂  α   π,t  

 (μ)   . These findings do not point to 
an important role for ex ante revisions in predicting average ex post forecast errors.

A second key element of our machine learning problem pertains to the data-rich 
environment that survey respondents operate in. To illustrate the importance of this, 
we revisit an exercise in the spirit of Chauvet and Potter (2013), who considered a 
wide range of low dimensional statistical models for predicting GDP growth, finding 
that a  second-order autoregression performed best for  one-quarter ahead predictions 
when evaluated in a  hold-out sample. Table 4 shows the estimated autoregressive 
coefficients from rolling,  one-quarter-ahead,  out-of-sample forecasting regressions 
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of GDP growth on predictors, in two specifications. A high-dimensional specification 
entertains very large numbers of potential predictor variables, as in baseline machine 
specification. The two autoregressive lags are always among these predictors. A low 
dimensional specification uses the two autoregressive lags and only two additional 
predictors: the SPF median forecast of GDP growth and its current nowcast, both of 
which are also included in the high dimensional model. We find that the coefficient 
on the first autoregressive lag, large and positive in the  low-dimensional setting, is 
zero in the high dimensional setting. As we have seen, this result does not imply that 
sparse specifications are rarely optimal. What it points to is the difficulty with know-
ing which small number of predictor variables are likely to be informative over time, 
when one does not have the benefit of hindsight afforded by an academic study of a 
single  hold-out sample. The challenge for  real-time decision-making is that different 
pieces of information become relevant at different points in time.

E. Belief Distortions over the Business Cycle

For our last set of results, we investigate the implications of our estimates for over- 
and  underreaction by survey respondents, a subject intense interest in the behavioral 

Figure 8. Coefficient on Forecast Revisions

Notes: The blue bar plots the estimated coefficient on the forecast revision from regressions of forecast errors 

on forecast revisions and additional regressors for the mean of the SPF inflation forecast:     π t+3   −  F  t   (μ)   [ π t+3  ]   


    
Forecast Error

    =  

α  jh  
 (μ)   +  β  jFR  

 (μ)    
(

   F  t   (μ)   [ π t+3  ]  −  F  t−1  
 (μ)   [ π t+3  ]   


    

Forecast Revisions

   
)

  +  B  jZ  
 (μ) ′  Z  jt   +  ϵ jt+h  .  The sample is 1995: I–2018:II. The red solid line shows 

the estimated  in-sample coefficient over the CG sample 1969: I–2014:IV. The blue dashed line shows the estimated 
 in-sample coefficient over the full sample 1969: I–2018:II. The black dotted line shows the estimated  in-sample 
coefficient over the evaluation sample 1995: I–2018:II.
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economics literature. We do so in a dynamic context in the wake of cyclical shocks, using 
the approach of Angeletos, Huo, and Sastry (2020)—henceforth, AHS. Specifically, 
AHS estimate the dynamic responses of inflation or real GDP growth, as well as 
survey forecasts of those variables, to two cyclical shocks identified in Angeletos, 
Collard, and Dellas (2018a).19 The cyclical shocks are the “ inflation-targeted shock,”  
  ϵ  t  π  , and the “ GDP-targeted shock,”   ϵ  t  GDP .  By construction, these shocks account for 
most of the business cycle variation in inflation and GDP growth, respectively.20 
Due to limitations of space, we restrict our analysis to the SPF median forecasts of 
 four-quarter-ahead inflation or GDP growth.

Figure 9 reports dynamic responses of the machine forecast, the median SPF survey 
forecast, and the relevant outcome variable, to innovations in   ϵ  t  π   and   ϵ  t  GDP  , estimated 
using local projections (Jorda 2005).21 The plots “align” the forecast responses so 
that, at a given vertical slice of the plot, the outcome and forecast responses are mea-
sured over the same time horizon and the difference between the two is the forecast 
error. For example, given a shock at time  t , the first response plotted for the survey 
forecast is   픽  t  

 (50)   [ y  t+4  ] ,  which is aligned vertically with the response of  y  at time  t + 4 .  
Following AHS, we set  H = 20  quarters as the maximum period for tracing out 
impulse responses.

Although the outcome variable is shown in Figure 9 for context, our measure of 
dynamic under- and  overreaction of the survey respondent’s belief is taken  vis-à-vis 
the machine forecast, not the ex post outcome. The figure shows that, in general, 
survey respondents initially  underreact to a shock (but more so in response to the 
output shock) but later  overreact (especially to the inflation shock). However, com-
paring the survey forecast to the realized value of the outcome variable greatly over-
states the degree of over- or  underreaction that can be attributed to belief distortions. 
This can be observed by noting that the survey forecasts recorded after the shock 
 undershoot the realized outcome by much more than they  undershoot the machine 
forecasts and they subsequently  overshoot the realized outcome by more than they 

19 We are grateful to the authors for providing us their data on these shocks.
20 These shocks are identified using a ten-variable macro vector autoregression (VAR) as the structural shock 

that maximizes the volatility of the outcome variable (i.e., inflation, GDP growth) at frequencies corresponding to 
cycles between 6 and 32 quarters.

21 The online Appendix gives the details of this estimation. We use a  four-quarter forecast horizon, in contrast 
to AHS who use a  three-quarter horizon. Our sample is also shorter than that used in AHS. The online Appendix 
shows that we reproduce the results in AHS for the same forecast horizon and sample size that they use, and that the 
results are similar using the shorter sample of this paper.

Table 4—Average Coefficients on the First Two AR lags

High dimensional Low dimensional

  β 1    0.000  0.022 
  β 2    − 0.002  − 0.013 

Notes: This table reports average autoregressive coefficients from 
 one-year-ahead rolling regressions of real GDP growth on predictors. The 
average coefficient on the first AR lag is   β 1   ; the average coefficient on the 
second is   β 2   . The high dimension estimation entertains very large numbers 
of potential predictors, in addition to the autoregressive lags, while the low 
dimension setting uses only two additional predictors. The sample spans 
1995: I–2018:II.
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 overshoot the machine forecast. AHS have interpreted the difference between the 
survey forecast and the realized value of the outcome variable as a measure of 
 nonrational expectations. By contrast, we interpret the difference between the sur-
vey and machine forecasts as a measure of systematic expectational error, and the 
difference between the machine forecast and the outcome variable as pure random 
forecast error, rather than bias. The discrepancy between the two suggests that the 
cyclical shocks   ϵ  t  π   and   ϵ  t  GDP   are not well observed in real time, even by a machine 
with a high degree of information processing capacity. This may be because   ϵ  t  π   and   
ϵ  t  GDP   are constructed from an  in-sample estimation using fully revised,  final-release 
historical data, while both the survey and machine forecasts are by contrast forced 
to rely entirely on  real-time information, including that about the outcome variables 
being forecast.22

In the wake of both cyclical shocks, the machine produces more accurate fore-
casts than the median SPF survey respondent. The gains in forecast accuracy are 
larger for inflation where the ratio  MS E   피  /MS E   픽    is 0.60, but even for GDP growth 
the ratio  MS E   피  /MS E   픽    is 0.73. That the machine improves forecasts in this context 
is noteworthy because it was not trained to optimize  out-of-sample prediction at the 

22 It is not obvious that these estimated cyclical shocks can be observed in real time. The SPF collects survey 
responses in February on the outlook for GDP in the second quarter of the year, but the advance estimate of Q2 
GDP is not released until the end of July. The final-release data used to construct the shocks are subject to further 
revision subsequently over the course of two months. And while some information pointing toward a large business 
cycle shock may be available in real time, such as that contained in financial markets, that is already accounted for 
by the machine.

Figure 9. Dynamic Responses to Cyclical Shocks

Notes: The figure plots dynamic responses of the machine and survey beliefs   픽  t  
(50) [ · ]  and   피  t  

(50) [ · ]  for the median 
respondent of the SPF to cyclical shocks from Angeletos et al. (2018a) (AHS). The AHS inflation and GDP growth 
“targeted” cyclical shocks are those from a ten-variable VAR that maximize the volatility in inflation and GDP 
growth at business cycle frequencies, respectively. The figure aligns the forecast responses such that, at a given ver-
tical slice, the outcome and forecast responses are measured over the same horizon, and the difference between the 
two is the forecast error. “  MSE  E   / MSE  F   ” is the ratio of the machine to survey mean squared forecast error averaged 
over the response time periods in the plot. The vintage of observations on the outcome variable is the one available 
four quarters after the period being forecast. The sample is 1995:I–2018:II.
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specific business cycle frequencies that, by construction, dominate variation in the 
outcome variables in Figure 9.

V. Conclusion

This paper provides new measures of belief distortions in survey responses 
and relates them to macroeconomic activity. Our measures are based on a novel 
dynamic machine learning algorithm explicitly designed to combat overfitting and 
detect demonstrable, ex ante errors in macroeconomic expectations. For the median 
respondent from all surveys, expectations about both inflation and GDP growth are 
biased upward on average, with  overoptimism about GDP growth especially prev-
alent among professional forecasters in the period after the Great Recession up to 
the end of our sample in 2018:II. These averages mask large variation over time in 
the median respondent’s bias, as well across respondents at any given point in time. 
A pervasive finding across all surveys is that respondents place too much weight 
on the marginal information embedded in their own belief and too little weight on 
other publicly available information. In response to cyclical shocks, we find that 
 underreaction preponderates in survey expectations of economic growth, while 
inflation expectations show greater delayed  overreaction. The results suggest that 
artificial intelligence algorithms can be productively deployed to correct errors in 
human judgment and improve predictive accuracy.
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